Essence of Linear Algebra
Some cool intuitions

Shreedhar Kodate

Department of Computer Science and Automation
Indian Institute of Science, Bengaluru

CSA Summer School, 2017
Disclaimer

All the credits for the content goes to the respective authors listed in the Appendix: Further Learning.
The Storyline

The Geometry of Linear Equations
 Vectors and Basis vectors
 Linear combinations and Span

The box game: Matrices
 Elimination and Multiplication, A=LU

Transforming your LIFE Leenearly
 Cool Video, The Determinant

Space Tour
 Column space, Null space, Inverses

Celebrity: The Rank
 Solution concept

Some things of Eigen
 Eigen values, Eigen vectors, Change of Basis
The Storyline

The Geometry of Linear Equations
 Vectors and Basis vectors
 Linear combinations and Span

The box game: Matrices
 Elimination and Multiplication, A=LU

Transforming your LIFE Leenearly
 Cool Video, The Determinant

Space Tour
 Column space, Null space, Inverses

Celebrity: The Rank
 Solution concept

Some things of Eigen
 Eigen values, Eigen vectors, Change of Basis
Vectors

What even are they?

- A line with a arrowhead? OR

▶ A line with a arrowhead? OR
Vectors

What even are they?

- A line with a arrowhead?
 OR
- A set of numbers arranged vertically?

OR

\[
\begin{bmatrix}
1 \\
2 \\
3
\end{bmatrix}
\]
Vectors

What even are they?

- A line with a arrowhead? OR
- A set of numbers arranged vertically?

\[
\begin{bmatrix}
1 \\
2 \\
3 \\
\end{bmatrix}
\]

OR

- An abstract \(\vec{v} \)
Vectors

Abstract view

\[\vec{u} + (\vec{v} + \vec{w}) = (\vec{u} + \vec{v}) + \vec{w} \]

\[\vec{v} + \vec{w} = \vec{w} + \vec{v} \]

There is a zero vector \(\vec{0} \) such that \(\vec{0} + \vec{v} = \vec{v} \) for all \(\vec{v} \). For every vector \(\vec{v} \) there is a vector \(-\vec{v}\) so that \(\vec{v} + (-\vec{v}) = \vec{0} \).

\[a(b\vec{v}) = (ab)\vec{v} \quad 1\vec{v} = \vec{v} \]

\[a(\vec{v} + \vec{w}) = a\vec{v} + a\vec{w} \]

\[(a + b)\vec{v} = a\vec{v} + b\vec{v} \]

\(^1\)Abstract vector spaces — Essence of Linear Algebra, Chapter 11
Basis Vectors

These are the vectors which can define the entire coordinate space.

▶ Do you recognize this special vector?

\[
\begin{bmatrix}
\vec{i} \\
\vec{j} \\
\vec{k}
\end{bmatrix}
\]
Basis Vectors

These are the vectors which can define the entire coordinate space.

▶ Do you recognize this special vector?

\[
\begin{bmatrix}
\vec{i} \\
\vec{j} \\
\vec{k}
\end{bmatrix}
\]

▶ Also, have you seen this?

\[
\begin{bmatrix}
1 & 1 \\
0 & 1
\end{bmatrix}
\]

This is a special matrix called Shear matrix.
Basis vectors

Example

The image\(^2\) below shows the basis vectors of a Shear matrix.

\[
\begin{bmatrix}
1 & 1 \\
0 & 1
\end{bmatrix}
\begin{bmatrix}
x \\
y
\end{bmatrix}
\]

\(^2\)Essence of Linear Algebra, Chapter 3
The Storyline

The Geometry of Linear Equations
 Vectors and Basis vectors
 Linear combinations and Span

The box game: Matrices
 Elimination and Multiplication, A=LU

Transforming your LIFE Leenearly
 Cool Video, The Determinant

Space Tour
 Column space, Null space, Inverses

Celebrity: The Rank
 Solution concept

Some things of Eigen
 Eigen values, Eigen vectors, Change of Basis
Linear combinations

Additivitiy

\[
\begin{bmatrix} 1 \\ 2 \end{bmatrix} + \begin{bmatrix} 6 \\ 3 \end{bmatrix} = \begin{bmatrix} 7 \\ 5 \end{bmatrix} \quad \vec{u} + \vec{v} = \vec{w}
\]

Scaling

\[
2 \begin{bmatrix} 1 \\ 2 \end{bmatrix} = \begin{bmatrix} 2 \\ 4 \end{bmatrix} \quad 2\vec{v} = (2\vec{v})
\]

Hybrid

\[
2 \begin{bmatrix} 1 \\ 2 \end{bmatrix} + 3 \begin{bmatrix} 6 \\ 3 \end{bmatrix} = \begin{bmatrix} 20 \\ 13 \end{bmatrix} \quad a\vec{u} + b\vec{v} = \vec{w}
\]
Span

Example

The image\(^3\) below shows how two vectors can span the 2D space.

\(^3\)Essence of Linear Algebra, Chapter 2
The Storyline

The Geometry of Linear Equations
Vectors and Basis vectors
Linear combinations and Span

The box game: Matrices
Elimination and Multiplication, A=LU

Transforming your LIFE Leenearly
Cool Video, The Determinant

Space Tour
Column space, Null space, Inverses

Celebrity: The Rank
Solution concept

Some things of Eigen
Eigen values, Eigen vectors, Change of Basis
Elimination

Gauss-Jordan Elimination
A method of solving a linear system of equations. This is done by transforming the system’s augmented matrix into reduced row-echelon form (rref) by means of row operations.

Types of row Operations:
Type 1: Swap the positions of two rows.
Type 2: Multiply a row by a nonzero scalar.
Type 3: Add to one row a scalar multiple of another.

Example

\[
\begin{bmatrix}
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 2 & 0 \\
0 & 0 & 0 & 0 & 0
\end{bmatrix}
\]

\[\text{RREF} = \]
Elimination using Multiplication

Example

\[\begin{align*}
 x + 2y + z &= 2 \\
 3x + 8y + z &= 12 \\
 4y + z &= 2
\end{align*} \]

\[
\begin{bmatrix}
 1 & 0 & 0 \\
 0 & 1 & 0 \\
 0 & -2 & 1
\end{bmatrix}
\begin{bmatrix}
 1 & 0 & 0 \\
 -3 & 1 & 0 \\
 0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
 1 & 2 & 1 \\
 3 & 8 & 1 \\
 0 & 4 & 1
\end{bmatrix}
= \begin{bmatrix}
 1 & 2 & 1 \\
 0 & 2 & -2 \\
 0 & 0 & 5
\end{bmatrix}
\]

\[E_{32}E_{31}E_{21}A = U \]
Example

\[
\begin{bmatrix}
1 & 2 & 1 \\
3 & 8 & 1 \\
0 & 4 & 1
\end{bmatrix}
=
\begin{bmatrix}
1 & 0 & 0 \\
3 & 1 & 0 \\
0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 2 & 1
\end{bmatrix}
\begin{bmatrix}
1 & 2 & 1 \\
0 & 2 & -2 \\
0 & 0 & 5
\end{bmatrix}
\]

\[EA = U\]

\[A = (E_{32}E_{31}E_{21})^{-1}U\]

\[A = E_{21}^{-1}E_{31}^{-1}E_{32}^{-1}U\]

\[A = LU\]

So, \[A = E^{-1}U\]. Therefore, \[L = E^{-1}\]
The Storyline

The Geometry of Linear Equations
Vectors and Basis vectors
Linear combinations and Span

The box game: Matrices
Elimination and Multiplication, \(A=LU \)

Transforming your LIFE Leenearly
Cool Video, The Determinant

Space Tour
Column space, Null space, Inverses

Celebrity: The Rank
Solution concept

Some things of Eigen
Eigen values, Eigen vectors, Change of Basis
Cool Video

Definition Cool
The phrase ”cool” is very relaxed, never goes out of style, and people will never laugh at you for using it.

Definition Video
Make a video recording of (something broadcast on television). YouTube nowadays.

Theorem
Cool + Video = JUST START PLAYING THE VIDEO!

Example
Here You Go: HUGO
Cool Video

Shreedhar Kodate

The Geometry of Linear Equations
Vectors and Basis vectors
Linear combinations and Span

The box game: Matrices
Elimination and Multiplication, $A=LU$
Transforming your LIFE Linearly

Cool Video, The Determinant

Space Tour
Column space, Null space, Inverses

Celebrity: The Rank
Solution concept

Some things of Eigen
Eigen values, Eigen vectors, Change of Basis

Summary
The Determinant

The determinant of a matrix A is denoted $\det(A)$ or $\det A$. It can be viewed as the scaling factor of the transformation described by the matrix.\(^4\)

The formula:

$$\det(A) = \begin{vmatrix} a & b \\ c & d \end{vmatrix} = ad - bc$$

The Determinant

The determinant of a matrix A is denoted $\text{det}(A)$ or $\det A$. It can be viewed as the scaling factor of the transformation described by the matrix.\(^4\)

The formula:

$$\det(A) = \begin{vmatrix} a & b \\ c & d \end{vmatrix} = ad - bc$$

- The determinant can tell us whether or not a given transformation associated with that matrix squishes everything into a smaller dimension.

The Determinant

The determinant of a matrix A is denoted $\det(A)$ or $\det A$. It can be viewed as the scaling factor of the transformation described by the matrix.\(^4\)

The formula:

\[
\det(A) = \begin{vmatrix} a & b \\ c & d \end{vmatrix} = ad - bc
\]

- The determinant can tell us whether or not a given transformation associated with that matrix squishes everything into a smaller dimension.
- Also, if the value of determinant is negative then the transformation is equivalent to inverting the orientation of space.

The Determinant

Example

The image\(^5\) below shows the significance of calculating the Determinant of a matrix.

\[
\begin{vmatrix}
3 & 2 \\
0 & 2 \\
\end{vmatrix} = 6
\]

\(^5\) The Determinant — Essence of Linear Algebra, Chapter 5
The Determinant

Example

The image\(^6\) below shows how to calculate the Determinant of a 2D matrix.

\[\det \begin{bmatrix} a & b \\ c & d \end{bmatrix} = (a + b)(c + d) - ac - bd - 2bc = ad - bc \]

\(^6\)The Determinant — Essence of Linear Algebra, Chapter 5
The Storyline

The Geometry of Linear Equations
Vectors and Basis vectors
Linear combinations and Span

The box game: Matrices
Elimination and Multiplication, A=LU

Transforming your LIFE Leenearly
Cool Video, The Determinant

Space Tour
Column space, Null space, Inverses

Celebrity: The Rank
Solution concept

Some things of Eigen
Eigen values, Eigen vectors, Change of Basis

Summary
Column space and Null space

Column space: \(C(A) \)

The column space of a matrix \(A \) is the vector space generated by all the linear combinations of the column vectors.

Null space: \(N(A) \)

The set of all vectors \(\vec{v} \) such that

\[
A \vec{v} = \vec{0}
\]

Example

\[
\begin{bmatrix}
1 & 1 & 2 \\
2 & 1 & 3 \\
3 & 1 & 4 \\
4 & 1 & 5 \\
\end{bmatrix}
\begin{bmatrix}
x \\
y \\
z \\
\end{bmatrix} =
\begin{bmatrix}
0 \\
0 \\
0 \\
0 \\
\end{bmatrix}
\Rightarrow N(A) = c
\begin{bmatrix}
1 \\
1 \\
-1
\end{bmatrix}
\]
Inverse of a matrix A

Inverse of $A = A^{-1}$

In terms of transformation, the matrix that undoes all the transformations made by matrix A is called as inverse of matrix A (A^{-1}).

$$A^{-1}A = AA^{-1} = I$$

$$Ax = b \Rightarrow A^{-1}Ax = A^{-1}b \Rightarrow x = A^{-1}b$$

Example

$$A = \begin{bmatrix} 7 & 2 & 1 \\ 0 & 3 & 1 \\ -3 & 4 & 2 \end{bmatrix} \quad b = \begin{bmatrix} 21 \\ 5 \\ -1 \end{bmatrix} \quad x = \begin{bmatrix} x \\ y \\ z \end{bmatrix}$$

$$x = A^{-1}b \Rightarrow \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} -2 & 8 & -5 \\ 3 & -11 & 7 \\ 9 & -34 & 21 \end{bmatrix} \begin{bmatrix} 21 \\ 5 \\ -1 \end{bmatrix} = \begin{bmatrix} 3 \\ 1 \\ -2 \end{bmatrix}$$
Example

The image below shows how two vectors are linked to each other via Inverse transformation.

\[A\mathbf{x} = \mathbf{v} \]
The Storyline

The Geometry of Linear Equations
 Vectors and Basis vectors
 Linear combinations and Span

The box game: Matrices
 Elimination and Multiplication, A=LU

Transforming your LIFE Linearly
 Cool Video, The Determinant

Space Tour
 Column space, Null space, Inverses

Celebrity: The Rank
 Solution concept

Some things of Eigen
 Eigen values, Eigen vectors, Change of Basis
Find Mr. Rank

What is the rank of the following matrix?

Be Quick!\(^8\)

\[
\begin{bmatrix}
12 & 15 & 14 & 19 & 13 & 21 & 05 & 07 & 41 & 51 \\
22 & 26 & 26 & 32 & 27 & 36 & 21 & 24 & 59 & 70 \\
10 & 11 & 12 & 13 & 14 & 15 & 16 & 17 & 18 & 19 \\
24 & 30 & 28 & 38 & 26 & 42 & 10 & 14 & 82 & 102 \\
30 & 33 & 36 & 39 & 42 & 45 & 48 & 51 & 54 & 57 \\
15 & 16.5 & 18 & 19.5 & 21 & 22.5 & 24 & 25.5 & 27 & 28.5
\end{bmatrix}
\]

\(^8\)You’ll be given choc!
The Rank

Solution concept provided by The Rank

The Rank tells you everything about the number of solutions to a given system of linear equations.\(^9\)

<table>
<thead>
<tr>
<th>Matrix A with dimensions m x n, rank r and rref(A) = R</th>
<th>r = m = n</th>
<th>r = n < m</th>
<th>r = m < n</th>
<th>r < m, r < n</th>
</tr>
</thead>
</table>
| R = I | R = \[
\begin{bmatrix}
I
\end{bmatrix}
\] | R = \[
\begin{bmatrix}
I \\
F
\end{bmatrix}
\] | R = \[
\begin{bmatrix}
I \\
F
\end{bmatrix}
\] |
| 1 | 0 or 1 | 1 or ∞ | 0 or ∞ |

\(^9\)Gilbert Strang, Linear Algebra lecture 8
The Storyline

The Geometry of Linear Equations
Vectors and Basis vectors
Linear combinations and Span

The box game: Matrices
Elimination and Multiplication, A=LU

Transforming your LIFE Leenearly
Cool Video, The Determinant

Space Tour
Column space, Null space, Inverses

Celebrity: The Rank
Solution concept

Some things of Eigen
Eigen values, Eigen vectors, Change of Basis
Some things of Eigen

Eigen values and vectors

An Eigen vector of a linear transformation is a non-zero vector whose direction does not change when that linear transformation is applied to it. More formally, if T is a linear transformation from a vector space \(V \) and \(\vec{v} \) is a vector in \(V \) that is not the zero vector, then \(\vec{v} \) is an eigenvector of \(T \) if \(T(\vec{v}) \) is a scalar multiple of \(\vec{v} \). This condition can be written as the equation

\[
T(\vec{v}) = \lambda \vec{v}
\]

where \(\lambda \) is a scalar known as the eigenvalue, characteristic value or root associated with the eigenvector \(\vec{v} \).
Eigen values and vectors

Example

The image10 below shows how the eigenvector does not change its direction after applying a linear transformation.

10Eigenvectors and eigenvalues, Essence of linear algebra, chapter 10
Eigen values and vectors

Example

The image\(^\text{11}\) below shows how the eigenvector gets scaled after applying a linear transformation.

\(^{11}\)Eigenvectors and eigenvalues, Essence of linear algebra, chapter 10
Change of Basis

New coordinates to Old coordinates

\[
\begin{bmatrix} 2 & -1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} -1 \\ 2 \end{bmatrix} = (-1) \begin{bmatrix} 2 \\ 1 \end{bmatrix} + (2) \begin{bmatrix} -1 \\ 1 \end{bmatrix} = \begin{bmatrix} -4 \\ 1 \end{bmatrix}
\]

Old coordinates to New coordinates

\[
\begin{bmatrix} 2 & -1 \\ 1 & 1 \end{bmatrix}^{-1} = \begin{bmatrix} 1/3 & 1/3 \\ -1/3 & 2/3 \end{bmatrix} \Rightarrow \begin{bmatrix} 1/3 & 1/3 \\ -1/3 & 2/3 \end{bmatrix} \begin{bmatrix} 3 \\ 2 \end{bmatrix} = \begin{bmatrix} 5/3 \\ 1/3 \end{bmatrix}
\]
Change of Basis

Transformation

Let \(\vec{v} \) be a vector in the New coordinates i.e. change of Basis vectors, \(A \) be the matrix representing the transformation: Change of Basis, and \(M \) be the transformation in Old coordinate system and \(T \) be the final transformation in the New coordinate system.

\[
A^{-1}MA\vec{v} = T\vec{v}
\]

Example

\[
\begin{bmatrix}
2 & -1 \\
1 & 1
\end{bmatrix}^{-1}
\begin{bmatrix}
0 & -1 \\
1 & 0
\end{bmatrix}
\begin{bmatrix}
2 & -1 \\
1 & 1
\end{bmatrix}
\vec{v} =
\begin{bmatrix}
1/3 & -2/3 \\
5/3 & -1/3
\end{bmatrix}
\vec{v}
\]
Summary

How do you possibly hope to *summarize the whole talk*?

Like the OLD MAN said: **TOGETHER!**
For Further Learning

- Gilbert Strang
 https://tinyurl.com/gt7dy36
 MIT OCW

- Grant Sanderson
 https://goo.gl/R1kBdb
 Essence of linear algebra, YouTube channel 3Blue1Brown

- Think Different
 You can always find more to learn... If you want to ;-)