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Nothing is more practical than a
good theory.

~ Ludwig Boltzmann
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ome mathematicians are birds, others

are frogs. Birds fly high in the air and

survey broad vistas of mathematics out

to the far horizon. They delight in con-

cepts that unify our thinking and bring
together diverse problems from different parts of
the landscape. Frogs live in the mud below and see
only the flowers that grow nearby. They delight
in the details of particular objects, and they solve
problems one at a time. [ happen to be a frog, but
many of my best friends are birds. The main theme
of my talk tonight is this. Mathematics needs both
birds and frogs. Mathematics is rich and beautiful
because birds give it broad visions and frogs give it
intricate details. Mathematics is both great art and
important science, because it combines generality
of concepts with depth of structures. It is stupid
to claim that birds are better than frogs because
they see farther, or that frogs are better than birds
because they see deeper. The world of mathemat-
ics is both broad and deep, and we need birds and
frogs working together to explore it.

This talk is called the Einstein lecture, and I am
grateful to the American Mathematical Society
for inviting me to do honor to Albert Einstein.
Einstein was not a mathematician, but a physicist
who had mixed feelings about mathematics. On
the one hand, he had enormous respect for the
power of mathematics to describe the workings
of nature, and he had an instinct for mathematical
beauty which led him onto the right track to find
nature’s laws. On the other hand, he had no inter-
est in pure mathematics, and he had no technical

Freeman Dyson is an emeritus professor in the School of
Natural Sciences, Institute for Advanced Study, Princeton,
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This article is a written version of his AMS Einstein Lecture,
which was to have been given in October 2008 but which
unfortunately had to be canceled.

skill as a mathematician. In his later years he hired
younger colleagues with the title of assistants to
do mathematical calculations for him. His way of
thinking was physical rather than mathematical.
He was supreme among physicists as a bird who
saw further than others. I will not talk about Ein-
stein since I have nothing new to say.

Francis Bacon and René Descartes

At the beginning of the seventeenth century, two
great philosophers, Francis Bacon in England and
René Descartes in France, proclaimed the birth of
modern science. Descartes was a bird, and Bacon
was a frog. Each of them described his vision of
the future. Their visions were very different. Bacon
said, “All depends on keeping the eye steadily fixed
on the facts of nature.” Descartes said, “I think,
therefore I am.” According to Bacon, scientists
should travel over the earth collecting facts, until
the accumulated facts reveal how Nature works.
The scientists will then induce from the facts the
laws that Nature obeys. According to Descartes,
scientists should stay at home and deduce the
laws of Nature by pure thought. In order to deduce
the laws correctly, the scientists will need only
the rules of logic and knowledge of the existence
of God. For four hundred years since Bacon and
Descartes led the way, science has raced ahead
by following both paths simultaneously. Neither
Baconian empiricism nor Cartesian dogmatism
has the power to elucidate Nature’s secrets by
itself, but both together have been amazingly suc-
cessful. For four hundred years English scientists
have tended to be Baconian and French scientists
Cartesian. Faraday and Darwin and Rutherford
were Baconians; Pascal and Laplace and Poincaré
were Cartesians. Science was greatly enriched by
the cross-fertilization of the two contrasting cul-
tures. Both cultures were always at work in both
countries. Newton was at heart a Cartesian, using
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In 1915 and 1916 Emmy Noether was asked by Felix Klein and David
Hilbert to assist them in understanding issues involved in any attempt to
formulate a general theory of relativity, in particular the new ideas of
Einstein. She was consulted particularly over the difficult issue of the
orm a law of conservation of energy could take in the new theory, and
she succeeded brilliantly, finding two deep theorems.
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In her short life, :

mathematician Emmy
Noether changed the face of
physics

Noether linked two important concepts in physics: conservation laws and
symmetries
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If a system has a continuous symmetry property, then there are
corresponding quantities whose values are conserved in time.
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"Without Emmy Noether, there would be a huge

gap in mathematics and its understanding”

Noémie Combe, Max Planck Institute for the Mathematics of Sciences, about the brilliant mathematician Emmy
Noether, regarded as the inventor of modern algebra
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Theoretical Limitations of Self-Attention in Neural Sequence Models
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ABSTRACT

Reliable generalization lies at the heart of safe ML and Al. However, understanding
when and how neural networks generalize remains one of the most important
unsolved problems in the field. In this work, we conduct an extensive empirical
study (20 910 models, 15 tasks) to investigate whether insights from the theory of
computation can predict the limits of neural network generalization in practice.
We demonstrate that grouping tasks according to the Chomsky hierarchy allows
us to forecast whether certain architectures will be able to generalize to out-of-
distribution inputs. This includes negative results where even extensive amounts
of data and training time never lead to any non-trivial generalization, despite
models having sufficient capacity to fit the training data perfectly. Our results
show that, for our subset of tasks, RNNs and Transformers fail to generalize on
non-regular tasks, LSTMs can solve regular and counter-language tasks, and only
networks augmented with structured memory (such as a stack or memory tape) can
successfully generalize on context-free and context-sensitive tasks.

Abstract

Transformers are emerging as the new
workhorse of NLP, showing great success
across tasks. Unlike LSTMs, transform-
ers process input sequences entirely through
self-attention. Previous work has suggested
that the computational capabilities of self-
attention to process hierarchical structures
are limited. In this work, we mathematically
investigate the computational power of self-
attention to model formal languages. Across
both soft and hard attention, we show strong
theoretical limitations of the computational
abilities of self-attention, finding that it can-
not model periodic finite-state languages,
nor hierarchical structure, unless the num-
ber of layers or heads increases with input
length. These limitations seem surprising
given the practical success of self-attention
and the prominent role assigned to hier-

chical structure and recursion. Hierarchical struc-
ture 1s widely thought to be essential to model-
ing natural language, in particular its syntax (Ever-
aert et al., 2015). Consequently, many researchers
have studied the capability of recurrent neural net-
work models to capture context-free languages
(e.g., Kalinke and Lehmann (1998); Gers and
Schmidhuber (2001); Griining (2006); Weiss et al.
(2018); Sennhauser and Berwick (2018); Korsky
and Berwick (2019)) and linguistic phenomena in-
volving hierarchical structure (e.g., Linzen et al.
(2016); Gulordava et al. (2018)). Some experi-
mental evidence suggests that transformers might
not be as strong as LSTMs at modeling hierarchi-
cal structure (Tran et al., 2018), though analysis
studies have shown that transformer-based mod-

els encode a good amount of syntactic knowledge

(e.g., Clark et al. (2019); Lin et al. (2019); Tenney
et al (2010

Transformers cannot solve simple problems:

parity, integer modulo arithmetic, balancing arithmetic expressions
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Real-World Applications:
Category Theory



Haskell is category theory programming

guicksort :: Urd
quicksort []
quicksort (p:xs)

=> [a] -> [a]

[]

n n o

where
lesser = filter (< p) xs
greater = filter (>= p) xs

// To sort array al] of size n: qgsort(a,0,n-1)

void gsort(int al[l, int lo, int hi)

{

ant hy 4 p, L

if (lo < hi) { C

1l 0}
h 1
p

do {
while ((1 < h) && (all] <= p))
=
while ((h > 1) && (al[h] >= p))
h = h-1;
if (L < h) {
t=ra [t
alll = alhl;
allhl ="%;
}
} while (1 < h);

alhi]l = all];
alll = p;

qsort( a, lo, 1-1);
qsort( a, 1+1, hi );

(quicksort lesser) ++ [p] ++ (quicksort greater)

Haskell

Quicksort

Why Cardano chose Haskell — and

why you should care
Cardano Foundation - Follow
Sminread - Dec 16,2020

o Qa4

Written by @ElliotHill of the Cardano Foundation




UNIFORM MANIFOLD

UMAP

APPROXIMATION & PROJECTION

How to Use UMAP

Basic UMAP Parameters

Plotting UMAP results

UMAP Reproducibility
Transforming New Data with UMAP

Inverse transforms

Parametric (neural network) Embedding

UMAP on sparse data

UMAP for Supervised Dimension
Reduction and Metric Learning

Using UMAP for Clustering
Outlier detection using UMAP
Combining multiple UMAP models

Better Preserving Local Density with
DensMAP

Improving the Separation Between
Similar Classes Using a Mutual k-NN
Graph

Document embedding using UMAP

& / UMAP: Uniform Manifold Approximation and Projection for Dimension Reduction
O Edit on GitHub

UNIFORM MANIFOLD

UMAP

APPROXIMATION & PROJECTION

UMAP: Uniform Manifold Approximation and
Projection for Dimension Reduction

Uniform Manifold Approximation and Projection (UMAP) is a dimension reduction technique that
can be used for visualisation similarly to t-SNE, but also for general non-linear dimension reduction.
The algorithm is founded on three assumptions about the data

1. The data is uniformly distributed on Riemannian manifold;

2. The Riemannian metric is locally constant (or can be approximated as such);

3. The manifold is locally connected.

From these assumptions it is possible to model the manifold with a fuzzy topological structure. The
embedding is found by searching for a low dimensional projection of the data that has the closest
possible equivalent fuzzy topological structure.

The details for the underlying mathematics can be found in our paper on ArXiv:

Mclnnes, L, Healy, J, UMAP: Uniform Manifold Approximation and Projection for Dimension Reduction,
ArXiv e-prints 1802.03426, 2018

You can find the software on github.

Installation
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Abstract

UMAP (Uniform Manifold Approximation and Projection) is a novel
manifold learning technique for dimension reduction. UMAP is constructed
from a theoretical framework based in Riemannian geometry and algebraic
topology. The result is a practical scalable algorithm that is applicable to
real world data. The UMAP algorithm is competitive with t-SNE for visu-
alization quality, and arguably preserves more of the global structure with
superior run time performance. Furthermore, UMAP has no computational
restrictions on embedding dimension, making it viable as a general purpose
dimension reduction technique for machine learning.

1 Introduction

Dimension reduction plays an important role in data science, being a funda-
mental technique in both visualisation and as pre-processing for machine

Definition 1. The category A has as objects the finite order sets |n| =
{1,...,n}, with morphims given by (non-strictly) order-preserving maps.

Following standard category theoretic notation, A®? denotes the cate-
gory with the same objects as A and morphisms given by the morphisms
of A with the direction (domain and codomain) reversed.

Definition 2. A simplicial set is a functor from A°P to Sets, the category of
sets; that is, a contravariant functor from A to Sets.

Given a simplicial set X : A®°? — Sets, it is common to denote the set
X ([n]) as X, and refer to the elements of the set as the n-simplices of X.
The simplest possible examples of simplicial sets are the standard simplices
A", defined as the representable functors homa (-, [n]). It follows from the
Yoneda lemma that there is a natural correspondence between n-simplices
of X and morphisms A™ — X in the category of simplicial sets, and it
is often helpful to think in these terms. Thus for each x € X,, we have
a corresponding morphism x : A" — X. By the density theorem and
employing a minor abuse of notation we then have

coim A" = X
reXy,

There is a standard covariant functor | - | : A — Top mapping from
the category A to the category of topological spaces that sends |[n| to the
standard n-simplex |A"| C R™"! defined as

n
A™ £ J(to, ... tn) ER™ Y ti=1,8>0
1=0

with the standard subspace topology. If X : A" — Sets is a simplicial
set then we can construct the realization of X (denoted | X |) as the colimit

| X| = colim |A"|
reXn



Definition 7. Define the functor FinReal : Fin-sFuzz — FinEPMet by

setting
FinReaI(AZCL) = ({xla L2y ey ZEn}, da)’
where
— lOg a l]CZ # .jv
da(x’iv x]) — ( )
0 otherwise
and then defining

FinReal(X) = colim FinReal(A”,).
AL 3K

[Mclnnes et al., 2020]



Definition 8. Define the functor FinSing : FinEPMet — Fin-sFuzz by
FinSing(Y) . ([’I’L], [O, a)) — homFinEpMet(FinReal(AZa), Y)

We then have the following theorem.

Theorem 1. The functors FinReal : Fin-sFuzz — FinEPMet andFinSing

FinEPMet — Fin-sFuzz form an adjunction with FinReal the left adjoint
and FinSing the right adjoint.

[Mclnnes et al., 2020]



Algorithm 1 UMAP algorithm
function UMAP(X, n, d, min-dist, n-epochs)

# Construct the relevant weighted graph
for all z € X do

fs-set[x] « LocALFuzzySIMPLICIALSET(.X, =, n)

top-rep < [, y fs-set|z] # We recommend the probabilistic t-conorm

# Perform optimization of the graph layout
Y < SPECTRALEMBEDDING(top-rep, d)
Y < OpTIMIZEEMBEDDING(top-rep, Y, min-dist, n-epochs)

return Y

[Mclnnes et al., 2020]
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https://doi.org/10.1038/s41586-019-0969-x

The single-cell transcriptional landscape
of mammalian organogenesis

Junyue Cao>*!'°, Malte Spielmann’!'?, Xiaojie Qiu'?, Xingfan Huang"?, Daniel M. Ibrahim*®, Andrew J. Hill}, Fan Zhang®,
Stefan Mundlos*°, Lena Christiansen®, Frank J. Steemers®, Cole Trapnell”-3* & Jay Shendure!”-8*

Mammalian organogenesis is a remarkable process. Within a short timeframe, the cells of the three germ layers transform
into an embryo that includes most of the major internal and external organs. Here we investigate the transcriptional
dynamics of mouse organogenesis at single-cell resolution. Using single-cell combinatorial indexing, we profiled the
transcriptomes of around 2 million cells derived from 61 embryos staged between 9.5 and 13.5 days of gestation, in a single
experiment. The resulting ‘mouse organogenesis cell atlas’ (MOCA) provides a global view of developmental processes
during this critical window. We use Monocle 3 to identify hundreds of cell types and 56 trajectories, many of which are
detected only because of the depth of cellular coverage, and collectively define thousands of corresponding marker genes.
We explore the dynamics of gene expression within cell types and trajectories over time, including focused analyses of
the apical ectodermal ridge, limb mesenchyme and skeletal muscle.

Most studies of mammalian organogenesis rely on model organisms,
and, in particular, the mouse. Mice develop quickly, with just 21 days
between fertilization and birth. The implantation of the blastocyst on
embryonic day (E) 4.0 is followed by gastrulation and the formation
of germ layers on E6.5-E7.5"2. At the early-somite stages, the embryo
transits from gastrulation to early organogenesis, forming the neural
plate and heart tube (E8.0-E8.5). In the ensuing days (E9.5-E13.5),
the embryo expands from hundreds-of-thousands to over ten-
million cells, and concurrently develops nearly all major organ systems.
Unsurprisingly, these four days have been intensively studied. Indeed,
most genes that underlie major developmental defects can be studied
in this window>*.

The transcriptional profiling of single cells (scRNA-seq) represents
a promising strategy for obtaining a global view of developmental pro-
cesses’ . For example, scRNA-seq recently revealed a large degree of
heterogeneity in neurons and myocardiocytes during mouse develop-
ment>®. However, although two scRNA-seq atlases of the mouse were
recently released'®!!, they are mostly restricted to adult organs and do
not attempt to characterize the emergence and dynamics of cell types
during development.

Single-cell RNA -seq of two million cells

Single-cell combinatorial indexing is a methodological framework
involving split-pool barcoding of cells or nuclei'?"'*. We previously
developed single-cell combinatorial-indexing RNA-sequencing analysis
(sci-RNA-seq) and applied it to generate 50-fold shotgun coverage of
the cellular content of L2-stage Caenorhabditis elegans'’. A concep-
tually identical method was recently termed SPLiT-seq®. To increase
the throughput, we explored more than 1,000 experimental condi-
tions (Extended Data Fig. 1a, b, Methods). The major improvements
of the resulting method, sci-RNA-seq3, include: (i) nuclei are extracted
directly from fresh tissues without enzymatic treatment, then fixed and
stored; (ii) for the third level of indexing'’, we switched from Tn5 tag-
mentation to hairpin ligation; (iii) individual enzymatic reactions were
optimized; and (iv) fluorescence-activated cell sorting was replaced by

dilution, and sonication and filtration steps were added to minimize
aggregation. Even without automation, sci-RNA-seq3 library prepara-
tion can be completed through the intensive effort of a single researcher
in one week at a cost of less than $0.01 per cell.

We collected 61 C57BL/6 mouse embryos at E9.5, E10.5, E11.5, E12.5
or E13.5, and snap-froze them in liquid nitrogen. Nuclei from each
embryo were isolated and deposited in individual wells in four 96-well
plates, such that the first index identified the originating embryo of
a given cell. As a control, we spiked a mixture of human HEK-293T
and mouse NIH/3T3 nuclei into two wells. The resulting sci-RNA-
seq3 library was sequenced in a single Illumina NovaSeq run, yielding
11 billion reads (Fig. 1a, Extended Data Fig. 1c, d).

From one experiment, we recovered 2,058,652 cells from mouse
embryos and 13,359 cells from HEK-293T or NIH/3T3 cells (UMI
(unique molecular identifier) count > 200). Transcriptomes from
human or mouse control wells were overwhelmingly species-coherent
(3% collisions), with performance similar to previous experiments'”
(Extended Data Fig. le-i). A limitation is that only around 7% of cells
entering the experiment were ultimately profiled, with losses largely
consequent on filtration steps intended to remove aggregates of nuclei.

We profiled a median of 35,272 cells per embryo (Fig. 1b, Extended
Data Fig. 1j). Despite shallow sequencing (about 5,000 raw reads per
cell; 46% duplicate rate), we recovered a median of 671 UMIs (519
genes) per cell (Extended Data Fig. 1k). The 3.7-fold-deeper sequenc-
ing of a subset of wells nearly doubled the complexity (to a median of
1,142 UMIs per cell; 87% duplicate rate). Given that we are profiling
RNA in nuclei, 59% of UMIs per cell strand specifically mapped to
introns and 25% mapped to exons. The profiles may therefore primarily
reflect nascent transcription, temporally offset, but also predictive®! of
the cellular transcriptome. Later-stage embryos exhibited somewhat
reduced UMI counts, possibly reflecting decreasing nuclear mRNA
content (Extended Data Fig. 11). We used Scrublet** to detect 4.3%
likely doublet cells, corresponding to a doublet estimate of 10.3%
including both within-cluster and between-cluster doublets (Extended
Data Fig. 1m, n).

IDepartment of Genome Sciences, University of Washington, Seattle, WA, USA. 2Molecular and Cellular Biology Program, University of Washington, Seattle, WA, USA. 3Department of Computer
Science, University of Washington, Seattle, WA, USA. “Max Planck Institute for Molecular Genetics, RG Development & Disease, Berlin, Germany. ®Institute for Medical and Human Genetics, Charité
Universitatsmedizin Berlin, Berlin, Germany. ®lllumina, San Diego, CA, USA. ’Brotman Baty Institute for Precision Medicine, Seattle, WA, USA. 8Allen Discovery Center for Cell Lineage Tracing,
Seattle, WA, USA. *Howard Hughes Medical Institute, Seattle, WA, USA. 19These authors contributed equally: Junyue Cao, Malte Spielmann. *e-mail: coletrap@uw.edu; shendure@uw.edu
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present during mouse organogenesis. a, UM AP 3D visualization of our
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the 10 major trajectories (columns, colour key in a, left). c, UMAP 3D
visualization of epithelial subtrajectories coloured by development stage
(colour key in a, right).
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simplicial set representations. UMAP then optimizes the lower-dimension embed-
ding, minimizing the cross-entropy between the low-dimensional representation
and the high-dimensional one.

The computational efficiency of UM AP markedly accelerated the analysis of the
mouse embryo data. We found that UMAP finished processing the two-million-
cell dataset in around 3 CPU hours whereas {-SNE took more than 64 CPU hours.
A few implementation details lead to the effectiveness of UM AP. Two major steps
are involved in both the UMAP and #-SNE algorithmes: first, the preprocessing
step before UM AP is similar to Monocle 2. In brief, genes expressed in fewer than
10 cells (or fewer than 5 cells in datasets with fewer than 1,000 cells) were filtered
out. The digital gene-count matrix was first normalized by cell-specific size factor
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Definition 4.2. Let X = (X, <x) and Y = (Y, <y) be preorders. A feasibility relation for X
given Y is a monotone map
d: X°P x Y — Bool. (4.3)

We denote this by ©: X —+ Y.
Givenx € X and y € Y, if ®(x, y) = true we say x can be obtained given y.

4.2.2 V-profunctors

We are now ready to recast Eq. (4.3) in abstract terms. Recall the notions of enriched
product (Definition 2.74), enriched functor (Definition 2.69), and quantale (Defini-
tion 2.79).

Definition 4.8. LetV = (V, <, I, ®) be a (unital commutative) quantale,1 and let X and
Y be V-categories. A V-profunctor from X to Y, denoted ®: X —+ Y, is a V-functor

O: XPxY -V,



DisCoPy is a Python toolkit for computing with string diagrams.

» Documentation: https://docs.discopy.org
o Repository: https://github.com/discopy/discopy
Why?
Applied category theory is information plumbing. It’s boring... but plumbers save

lives than doctors.

As string diagrams become as ubiquitous as matrices, they need their own fundz
package: DisCoPy.
How?

DisCoPy began as an implementation of:

° DisCoCat (distributional compositional categorical) models,
o and QNLP (guantum natural language processing).

This application has now been packaged into its own library, lambeq.

Who?

e Giovanni de Felice (CEO)

@ Alexis Toumi (COO)

° Richie Yeung (CFO)

e Boldizsar Poor (CTO)

s Bob Coecke (Honorary President)

Diagrammatic Differentiation
for Quantum Machine Learning

Alexis Toumi*", Richie Yeung', Giovanni de Felice*"

* Department of Computer Science, University of Oxford T Cambridge Quantum Computing Ltd.

We introduce diagrammatic differentiation for tensor calculus by generalising the dual number con-
struction from rigs to monoidal categories. Applying this to ZX diagrams, we show how to calculate
diagrammatically the gradient of a linear map with respect to a phase parameter. For diagrams
of parametrised quantum circuits, we get the well-known parameter-shift rule at the basis of many
variational quantum algorithms. We then extend our method to the automatic differentation of hybrid
classical-quantum circuits, using diagrams with bubbles to encode arbitrary non-linear operators.
Moreover, diagrammatic differentiation comes with an open-source implementation in DisCoPy, the
Python library for monoidal categories. Diagrammatic gradients of classical-quantum circuits can
then be simplified using the PyZX library and executed on quantum hardware via the tket compiler.
This opens the door to many practical applications harnessing both the structure of string diagrams
and the computational power of quantum machine learning.

Introduction

String diagrams are a graphical language introduced by Penrose [33] to manipulate tensor expressions:
wires represent vector spaces, nodes represent multi-linear maps between them. In [34], these diagrams
are used to describe the geometry of space-time and an extra piece of notation is introduced: the covariant
derivative 1s represented as a bubble around the tensor to be differentiated. Joyal and Street [25, 26]
characterised string diagrams as the arrows of free monoidal categories, however their geometry of tensor
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Ends and Coends



Definition 26. Given a pair of bifunctors F,G : C°? x C — D, a dinatural transformation is defined as follows:
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Definition 28. Given a fixed bifunctor F' : C°? x C — D, we define the category of wedges VV(F') where each object

is a wedge A; = F and given a pair of wedges Ay = F and A/, = F', we choose an arrow f : d — d’ that makes the
following diagram commute:

F(c,c)

Analogously, we can define a category of cowedges where each object is defined as a cowedge F' = Ay.

Definition 29. Given a bifunctor F' : C°? x C — D, the end of F’ consists of a terminal wedge w : end(F') = F'. The
object end(F') € D is itself called the end. Dually, the coend of F' is the initial object in the category of cowedges
F = coend(F"), where the object coend(F') € D is itself called the coend of F.




Definition 65. The geometric realization | X' | of a simplicial set X is defined as the topological space

X| =] | X, x A"/ ~

n =0

where the n-simplex X,, 1s assumed to have a discrete topology (i.e., all subsets of X, are open sets), and A" denotes
the fopological n-simplex



The spaces A™, n > 0 can be viewed as cosimplicial topological spaces with the following degeneracy and face maps:

(Si(t(),...,tn) — (to,...,t,,;_l,O,tz-,...,tn) for 0 )

O'j(t(),...,tn) — (t(),...,tj —|—tj_|_1,...,tn) for0< 1< n

Note that §; : R™ — R"*! whereas o; : R" — R 1,

The equivalence relation ~ above that defines the quotient space 1s given as:

(di(z), (to,... tn)) ~ (x,d;(tg,...,tn))

(Sl @) (o 200 3 Tn) o= (30 lgs 20: 580 )



Topological Embeddings as Coends

We now bring in the perspective that topological embeddings can be interpreted as coends as well. Consider the functor

F:A°x A — Top

where

F(In], [m]) = Xpn x A™

where F' acts contravariantly as a functor from A to Sets mapping |n| — X,,, and covariantly mapping [m| — A™ as
a functor from A to the category Top of topological spaces.



The “Geometric” Transformer Model

/ (Transformeryn) - An

Intuition: Construct a simplicial set of of Transformers by
composing sequences of length n

Embed them in a Kan complex



Diffusion Process and Kan Complexe
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Generative Al and Kan Complexes

Diffusion models: X - X1 Xo - o 7

Gradually add Gaussian - - - - -« - - e “«——————
noise and then reverse

Every morphism

Invertible!

Figure Source: https://lilianweng.github.io/posts/2021-07-11-diffusion-models/



Summary

In these three lectures, we constructed a (higher-order) category theory of
generative Al, named GAIA

Our goal was primary theoretical: we want to illustrate how category
theory can give deep insight into hard practical problems

Implementing GAIA is a problem for future work!

Read my book drafts (continually updated) on my UMass web page



We need birds and frogs working together — Freeman Dyson



