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Birds and Frogs

Freeman Dyson

ms from different parts of
the landscape. Frogs live in the mud below and see
only the flowers that grow nearby. They delight
in the details of particular objects, and they solve
problems one at a time. I happen to be a frog, but
many of my best friends are birds. The main theme
of my talk tonight is this. Mathematics needs both
birds and frogs. Mathematics is rich and beautiful
because birds give it broad visions and frogs give it
intricate details. Mathematics is both great art and
important science, because it combines generality
of concepts with depth of structures. It is stupid
to claim that birds are better than frogs because
they see farther, or that frogs are better than birds
because they see deeper. The world of mathemat-
ics is both broad and deep, and we need birds and
frogs working together to explore it.

This talk is called the Einstein lecture, and I am
grateful to the American Mathematical Society
for inviting me to do honor to Albert Einstein.
Einstein was not a mathematician, but a physicist
who had mixed feelings about mathematics. On
the one hand, he had enormous respect for the
power of mathematics to describe the workings
of nature, and he had an instinct for mathematical
beauty which led him onto the right track to find
nature’s laws. On the other hand, he had no inter-
est in pure mathematics, and he had no technical

Freeman Dyson is an emeritus professor in the School of
Natural Sciences, Institute for Advanced Study, Princeton,
NJ. His email address is dyson@ias . edu.

This article is a written version of his AMS Einstein Lecture,
which was to have been given in October 2008 but which
unfortunately had to be canceled.

He was supreme among phys ist
saw further than others. I will not t
stein since I have nothing new to say.

Francis Bacon and René Descartes

At the beginning of the seventeenth century, two
great philosophers, Francis Bacon in England and
René Descartes in France, proclaimed the birth of
modern science. Descartes was a bird, and Bacon
was a frog. Each of them described his vision of
the future. Their visions were very different. Bacon
said, “All depends on keeping the eye steadily fixed
on the facts of nature.” Descartes said, “I think,
therefore I am.” According to Bacon, scientists
should travel over the earth collecting facts, until
the accumulated facts reveal how Nature works.
The scientists will then induce from the facts the
laws that Nature obeys. According to Descartes,
scientists should stay at home and deduce the
laws of Nature by pure thought. In order to deduce
the laws correctly, the scientists will need only
the rules of logic and knowledge of the existence
of God. For four hundred years since Bacon and
Descartes led the way, science has raced ahead
by following both paths simultaneously. Neither
Baconian empiricism nor Cartesian dogmatism
has the power to elucidate Nature’s secrets by
itself, but both together have been amazingly suc-
cessful. For four hundred years English scientists
have tended to be Baconian and French scientists
Cartesian. Faraday and Darwin and Rutherford
were Baconians; Pascal and Laplace and Poincaré
were Cartesians. Science was greatly enriched by
the cross-fertilization of the two contrasting cul-
tures. Both cultures were always at work in both
countries. Newton was at heart a Cartesian, using
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ome mathematicians are birds, others
are frogs. Birds fly high in the air and
survey broad vistas of mathematics out
to the far horizon. They delight in con-
cepts that unify our thinking and bring
together diverse problems from different parts of
the landscape. Frogs live in the mud below and see
only the flowers that grow nearby. They delight
in the details of particular objects, and they solve
problems one at a time. I happen to be a frog, but
many of my best friends are birds. The main theme
of my talk tonight is this. Mathematics needs both
birds and frogs. Mathematics is rich and beautiful
because birds give it broad visions and frogs give it
intricate details. Mathematics is both great art and
important science, because it combines generality
of concepts with depth of structures. It is stupid
to claim that birds are better than frogs because
they see farther, or that frogs are better than birds
because they see deeper. The world of mathemat-
ics is both broad and deep, and we need birds and
frogs working together to explore it.

Al needs birds and frogs.

My three talks are on generative Al
for “birds”.
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“I propose to consider the question, ‘Can machines think’?" — Alan Turing, Mind, Volume LIX, Issue
236, October 1950, Pages 433—460.

Imitation Games
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Indus script: Language Decipherment

&
SClence Current Issue First release papers Archive About v [ Subm

S S YU S

3327 333 A3 335 3367 a7v 3387
AL W T -8 U 1 o= Py ne e
342+ 343t 344 345F 346 3471 3487
@ =) @ =) @ @
U W WW U U Entropic Evidence for Linguistic Structure in the Indus
352 353 354 355 356 357 3587 Sc ri pt
WYY wV Y QO U a
RAJESH P.N. RAO, NISHA YADAV, MAYANK N. VAHIA, HRISHIKESH JOGLEKAR, R. ADHIKARI, AND IRAVATHAM MAHADEVAN Authors Info & Affiliations
362 63 Jod 3657 366 67| 368
w O 0 @ @ Ié@' @ SCIENCE - 23 Apr2009 - Vol 324, Issue 5931 -« p.1165 - DOI:10.1126/science.1170391
T2 313+ 374t 375t 376 '3?'.-" 378 $ a5 9y 93 a0 » (
® 0 0 |
© © O

332 383 R4+ 385 386 8T 388
it Abstract
g @& ¥ & 9 ¢ 3
392 3937 34T 95 396 7 398

oo The script of the ancient Indus civilization remains undeciphered. The hypothesis (
/&h @3 .(D. (U @ @ O‘O that the script encodes language has recently been questioned. Here, we present ’
402+ 4037 404 406 407 408

evidence for the linguistic hypothesis by showing that the script’s conditional en-
tropy is closer to those of natural languages than various types of nonlinguistic
systems. ¢



Le Lemme du Gare du Nord

‘\7-"] \

on F
IHE YONEDA |

. ANI
SAUNDERS MAC |

' § , “ia ) : 1, !
r - " 1o ) iIs “"']I k“‘"L “ " 'I":ll‘
A . ] ' rxb lt]\ hl“l‘ I " {(’ }‘ ; . l("'llyl = G .
A\‘ﬂl;\\‘ (l l“ 1'1‘ .~ th. “ ‘t”l“' "3".‘{“] 'l.l"'l‘ "l~‘ ""’l‘ l
N ’ J N, t.l"u‘ . /
t.‘!'l . . »

-
a bijection to the set Fle)

Nat(Hom(e, =), F) & F(e¢)

Yoneda ('X‘."n\'!‘vf .’Hatmg
the story of the origins of
this lemma, as follows. He
had guided Samuel Eilen-
berg during Eilenberg's visit

L

Objects are defined by their interactions

Japan, and in this process
learned he mological algebra.
Soon Yoneda spent a year in
France apparently in 1054
or 1955 There he met
Saunders Mac Lane. Mac
Lave, they vVisiting Paris
Was anxious 1o Jearn from
Yonedas, and Commenced an
W with Yoneda in a

The Yoneda Lemma came to “life” in 1954

intervie

TVIEW was contin-
on Yoneda's train yp.

tl jis departure,
course, Mac |
aboyt the

In jts
Aane learned
lemma and sub.

it

Coincidentally, Turing died in 1954

\ ! lg(‘br
elated functiop Extnie 4 {lence sl s L functor
M be givey by 7% . 17 pp 05 ) Could e defined by, X = G; In 1954 1
¢ v ¢ -
. ):,: “w ‘gjn:en by co Position of st ‘u‘l. Subseg uent|y he oh (sd":f eXact Sequences (in
end” of 4 bifunet, e €W ~v th
: a5 the ® Products her:
notiopn hiu; R 10 a [dp(hr rst t
1 Widelv int o O lory £
Made decisive mmri‘l:l{::.umd * by Day apq Kelly ang [,u J0urn,) (vol Milate the notion
Ve n : 718 10 albegry, ' ¥ Mac Lane. Ins; 907-526,). This
onry his recen, dt’ath h

ort, \’(mwln has




Natural Transformations
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Stream of tokens from/to A Stream of tokens from/to B

<: Human or Machine? >

@Q \/X A
\

Participant A Participant B

Tester

Count me out on this one. I never could write poetry.

C(X.-)

Evaluator < Participant X

Please write me a sonnet on the subject of the Forth Bridge.




“The true logic of
this world lies in the
calculus of probabilities”

James Clerk Maxwell

Scottish Scientist
1831-1879




The “true logic” of Generative Al
lies in the Calculus of (Co)Ends

[ F(c,c) rF(c, C)
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Ends Coends
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UNIVERSAL IMITATION GAMES*

A PREPRINT

Sridhar Mahadevan
Adobe Research and University of Massachusetts, Amherst
smahadev@adobe.com, mahadeva@umass.edu

February 16, 2024

ABSTRACT

In 1950, Alan Turing proposed a framework called an imitation game in which the participants are
to be classified Human or Machine solely from natural language interactions. Using mathematics
largely developed since Turing — category theory — we investigate a broader class of universal
imitation games (UIGs). Choosing a category means defining a collection of objects and a collection
of composable arrows between each pair of objects that represent “measurement probes" for solving
UIGs. The theoretical foundation of our paper rests on two celebrated results by Yoneda. The
first, called the Yoneda Lemma, discovered in 1954 — the year of Turing’s death — shows that
objects in categories can be identified up to isomorphism solely with measurement probes defined by
composable arrows. Yoneda embeddings are universal representers of objects in categories. A simple
yet general solution to the static UIG problem, where the participants are not changing during the
interactions, 1s to determine if the Yoneda embeddings are (weakly) isomorphic. A universal property
in category theory is defined by an initial or final object. A second foundational result of Yoneda from
1960 defines initial objects called coends and final objects called ends, which yields a categorical
“integral calculus" that unifies probabilistic generative models, distance-based kernel, metric and
optimal transport models, as well as topological manifold representations. When participants adapt
during interactions, we study two special cases: in dynamic UIGs, “learners” imitate “teachers”. We
contrast the initial object framework of passive learning from observation over well-founded sets
using inductive inference — extensively studied by Gold, Solomonoff, Valiant, and Vapnik — with the
final object framework of coinductive inference over non-well-founded sets and universal coalgebras,
which formalizes learning from active experimentation using causal inference or reinforcement
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Challenges for Generative Al



Generative Al faces energy crisis
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Fewer and fewer countries have high birthrates El]t New Qork E’imcs
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Total fertility rates and populations for countries with at least one million people.

Population
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Niger
6.8
100 milli e .
. The total fertility rate is the
number of births a woman would
100,000 have if she followed the average
patterns of births in her country
Total fertility rate during her lifetime.
6_
Mali
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Over the past two centuries,
Nigeria birthrates have fallgn
5.2 everywhere. Africa is the only
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OPINION

A rate of about 2.1 is known as
replacement fertility because the
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Because most demographers look ahead only to 2100, there is
no consensus on exactly how quickly populations will fall after
that. Over the past 100 years, the global population
quadrupled, from two billion to eight billion. As long as life
continues as it has — with people choosing smaller family
sizes, as 1S now common in most of the world — then in the
22nd or 23rd century, our decline could be just as steep as our

rise.

1000 B.C.

2085

10 billion people
O

2022
8 billion people (?

110 million people —
C*

If the whole world
had the fertility rate

of the U.S. today

Other
possible
scenarios



Published as a conference paper at ICLR 2023

Theoretical Limitations of Self-Attention in Neural Sequence Models

NEURAL NETWORKS AND THE CHOMSKY HIERARCHY Michael Hahn
Stanford University

mhahn2@stanford.edu

Grégoire Delétang*! Anian Ruoss*! Jordi Grau-Moya' Tim Genewein' Li Kevin Wenliang'

Elliot Catt' Chris Cundy'? Marcus Hutter' Shane Legg' Joel Veness' Pedro A. Ortega'

ABSTRACT

Reliable generalization lies at the heart of safe ML and Al. However, understanding
when and how neural networks generalize remains one of the most important
unsolved problems in the field. In this work, we conduct an extensive empirical
study (20 910 models, 15 tasks) to investigate whether insights from the theory of
computation can predict the limits of neural network generalization in practice.
We demonstrate that grouping tasks according to the Chomsky hierarchy allows
us to forecast whether certain architectures will be able to generalize to out-of-
distribution inputs. This includes negative results where even extensive amounts
of data and training time never lead to any non-trivial generalization, despite
models having sufficient capacity to fit the training data perfectly. Our results
show that, for our subset of tasks, RNNs and Transformers fail to generalize on
non-regular tasks, LSTMs can solve regular and counter-language tasks, and only
networks augmented with structured memory (such as a stack or memory tape) can
successfully generalize on context-free and context-sensitive tasks.

Abstract

Transformers are emerging as the new
workhorse of NLP, showing great success
across tasks. Unlike LSTMs, transform-
ers process input sequences entirely through
self-attention. Previous work has suggested
that the computational capabilities of self-
attention to process hierarchical structures
are limited. In this work, we mathematically
investigate the computational power of self-
attention to model formal languages. Across
both soft and hard attention, we show strong
theoretical limitations of the computational
abilities of self-attention, finding that it can-
not model periodic finite-state languages,
nor hierarchical structure, unless the num-
ber of layers or heads increases with input
length. These limitations seem surprising
given the practical success of self-attention
and the prominent role assigned to hier-

chical structure and recursion. Hierarchical struc-
ture 1s widely thought to be essential to model-
ing natural language, in particular its syntax (Ever-
aert et al., 2015). Consequently, many researchers
have studied the capability of recurrent neural net-
work models to capture context-free languages
(e.g., Kalinke and Lehmann (1998); Gers and
Schmidhuber (2001); Griining (2006); Weiss et al.
(2018); Sennhauser and Berwick (2018); Korsky
and Berwick (2019)) and linguistic phenomena in-
volving hierarchical structure (e.g., Linzen et al.
(2016); Gulordava et al. (2018)). Some experi-
mental evidence suggests that transformers might
not be as strong as LSTMs at modeling hierarchi-
cal structure (Tran et al., 2018), though analysis
studies have shown that transformer-based mod-

els encode a good amount of syntactic knowledge

(e.g., Clark et al. (2019); Lin et al. (2019); Tenney
et al (2010

Transformers cannot solve simple problems:

parity, integer modulo arithmetic, balancing arithmetic expressions
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GAIA: CATEGORICAL FOUNDATIONS OF GENERATIVE AI*

A PREPRINT

Paper online at my
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ABSTRACT

In this paper, we explore the categorical foundations of generative Al. Specifically, we investigate
a Generative Al Architecture (GAIA) that lies beyond backpropagation, the longstanding algorith-
F h . b k' mic workhorse of deep learning. Backpropagation is at its core a compositional framework for
Ort COm I ng OO . (un)supervised learning: it can be conceptualized as a sequence of modules, where each module
updates its parameters based on information it receives from downstream modules, and in turn, trans-
mits information back to upstream modules to guide their updates. GAIA 1s based on a fundamentally
different hierarchical model. Modules in GAIA are organized into a simplicial complex. Each
n-simplicial complex acts like a manager of a business unit: it receives updates from its superiors and
transmits information back to its n + 1 subsimplicial complexes that are its subordinates. To ensure
this simplicial generative Al organization behaves coherently, GAIA builds on the mathematics of
the higher-order category theory of simplicial sets and objects. Computations in GAIA, from query
answering to foundation model building, are posed in terms of lifting diagrams over simplicial objects.
The problem of machine learning in GAIA 1s modeled as “horn" extensions of simplicial sets: each
sub-simplicial complex tries to update its parameters in such a way that a lifting diagram 1s solved.
Traditional approaches used in generative Al using backpropagation can be used to solve “inner" horn
extension problems, but addressing “outer horn" extensions requires a more elaborate framework.

At the top level, GAIA uses the simplicial category of ordinal numbers with objects defined as
(n],n > 0 and arrows defined as weakly order-preserving mappings f : [n] — [m], where f(i) <
f(7),7 < j. This top-level structure can be viewed as a combinatorial “factory" for constructing,




Monoidal Categories

 Equipped with a product internal bifunctor:
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* Unitinterval [0,1]: closed symmetric monoidal preorder
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Backprop as Functor:
A compositional perspective on supervised
learning

Brendan Fong David Spivak

Department of Mathematics,
Massachusetts Institute of Technology

Abstract—A supervised learning algorithm searches over a
set of functions A — B parametrised by a space P to find the
best approximation to some ideal function f: A — B. It does
this by taking examples (a, f(a)) € A X B, and updating the
parameter according to some rule. We define a category where
these update rules may be composed, and show that gradient
descent—with respect to a fixed step size and an error
function satisfying a certain property—defines a monoidal
functor from a category of parametrised functions to this
category of update rules. A key contribution is the notion
of request function. This provides a structural perspective
on backpropagation, giving a broad generalisation of neural
networks and linking it with structures from bidirectional
programming and open games.

Rémy Tuyéras

Computer Science and Artificial Intelligence Lab,
Massachusetts Institute of Technology

Consider a supervised learning algorithm. The goal
of a supervised learning algorithm is to find a suitable
approximation to a function f: A — B. To do so,
the supervisor provides a list of pairs (a,b) € A X B,
each of which is supposed to approximate the values
taken by f, i.e. b = f(a). The supervisor also defines
a space of functions over which the learning algorithm
will search. This is formalised by choosing a set P and
a function I: P X A — B. We denote the function at
parameter p € P as I(p,—): A — B. Then, given a pair
(a,b) € A X B, the learning algorithm takes a current
hypothetical approximation of f, say given by I(p, —),

L] - L]
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Figure 10: A learner in the symmetric monoidal category Learn 1s defined as a morphism. Later in Section we will
see how to define learners as coalgebras instead.

Definition 3. Fong et al.|[2019] The symmetric monoidal category Learn is defined as a collection of objects that
define sets, and a collection of an equivalence class of learners. Each learner is defined by the following 4-tuple (see

Figure([10).

* A parameter space I

e

* An implementation function/ : P x A — B
* Anupdate functionU : P x A x B — P

e Arequest functionr : P X AX B — A
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Sequential Composition

Parallel Composition



A (P,I,U,r) (Q,J,V,s)

s B >

The composite learner A — C'is defined as (P x Q,I-J, U -V, r - s), where the composite implementation function is

(I ' J)(p, q a’) = '](qwl(p a))

and the composite update function is

U-V(p,q,a,c):=(U(p a,s(q,I(p,a),c)),V(g,1(p,a),c)

and the composite request function 1s

(71 ' S)(p, q, a, C) — 7’(1), a, S(Qa I(p, a)a C))
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Natural Transformations for Deep Learning

Backpropagation

Category of Category of

Parameters | earners

Stochastic approximation

Ff

Gf




GAIA: Generative Al Architecture

Higher-order category theory for
Deep Learning!
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Sridhar Mahadevan
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Citation: Mahadevan. S. Universal

Adobe Research, 345 Park Avenue, San Jose, CA 95110, USA; smahadev@adobe.com

Abstract: Universal Causality is a mathematical framework based on higher-order category theory,
which generalizes previous approaches based on directed graphs and regular categories. We present
a hierarchical framework called UCLA (Universal Causality Layered Architecture), where at the
top-most level, causal interventions are modeled as a higher-order category over simplicial sets
and objects. Simplicial sets are contravariant functors from the category of ordinal numbers A into
sets, and whose morphisms are order-preserving injections and surjections over finite ordered sets.
Non-random interventions on causal structures are modeled as face operators that map n-simplices
into lower-level simplices. At the second layer, causal models are defined as a category, for example
defining the schema of a relational causal model or a symmetric monoidal category representation
of DAG models. The third layer corresponds to the data layer in causal inference, where each
causal object is mapped functorially into a set of instances using the category of sets and functions
between sets. The fourth homotopy layer defines ways of abstractly characterizing causal models
in terms of homotopy colimits, defined in terms of the nerve of a category, a functor that converts
a causal (category) model into a simplicial object. Each functor between layers is characterized
by a universal arrow, which define universal elements and representations through the Yoneda
Lemma, and induces a Grothendieck category of elements that enables combining formal causal
models with data instances, and is related to the notion of ground graphs in relational causal models.
Causal inference between layers is defined as a lifting problem, a commutative diagram whose
objects are categories, and whose morphisms are functors that are characterized as different types of
fibrations. We illustrate UCLA using a variety of representations, including causal relational models,
symmetric monoidal categorical variants of DAG models, and non-graphical representations, such as
integer-valued multisets and separoids, and measure-theoretic and topological models.

Keywords: artificial intelligence; higher-order category theory; causality; machine learning; statistics

Table 2. Each layer of UCLA represents a categorical abstraction of causal inference.

Layer Objects Morphisms Description
Simplicial n] ={0,1,...,n} f =[m] = [n] Category of interventions
Relational Vertices V, Edges E S,$1:E=V Causal Model Category

Tabular Sets Functionsonsets f : S — T Category of instances

Homotopy Topological Spaces Causal equivalence Causal homotopy
Quasicategory of simplicial Layered Architecture for Universal Causality (UCLA)

objects A 'n]

@ Lifting Problems

Grothendieck Category
Of Elements

Functor
>(

Universal Arrow

Category of causal objects

Grothendieck Category
Of Elements

Universal Arrow

Functor

A4

Category of Instances

<=l —
Attribute
o Helshon “’/ Grothendieck Category
Of Elements

Universal Arrow % Functor

Category of homotopies




GAIA: Categorical Foundations of Generative Al
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Simplicial framework for generative Al

Each directed
edge defines a morphism that

represents a generative Al method

iy Each collection of

simplices can be "glued” on
to compatible simplices through
“ports” that define the components

of the simplex.

Simplicial learning is based on
extension problems of
inner and outer "horns” of

simplicial objects

2-simplices

1-simplices

?

3-simplex

O-simplices




Lifting Diagrams




Simplicial Objects: One stop ML shopping center

hi ' '
Chicago Lectures in Mathematics Cambridge studies in advanced mathematics 188

From Categories to
Homotopy Theory

Simplicial %
Objects In
Algebraic

Topology

J. Peter May




UNIFORM MANIFOLD

UMAP

APPROXIMATION & PROJECTION

How to Use UMAP

Basic UMAP Parameters

Plotting UMAP results

UMAP Reproducibility
Transforming New Data with UMAP

Inverse transforms

Parametric (neural network) Embedding

UMAP on sparse data

UMAP for Supervised Dimension
Reduction and Metric Learning

Using UMAP for Clustering
Outlier detection using UMAP
Combining multiple UMAP models

Better Preserving Local Density with
DensMAP

Improving the Separation Between
Similar Classes Using a Mutual k-NN
Graph

Document embedding using UMAP

& / UMAP: Uniform Manifold Approximation and Projection for Dimension Reduction
O Edit on GitHub

UNIFORM MANIFOLD

UMAP

APPROXIMATION & PROJECTION

UMAP: Uniform Manifold Approximation and
Projection for Dimension Reduction

Uniform Manifold Approximation and Projection (UMAP) is a dimension reduction technique that
can be used for visualisation similarly to t-SNE, but also for general non-linear dimension reduction.
The algorithm is founded on three assumptions about the data

1. The data is uniformly distributed on Riemannian manifold;

2. The Riemannian metric is locally constant (or can be approximated as such);

3. The manifold is locally connected.

From these assumptions it is possible to model the manifold with a fuzzy topological structure. The
embedding is found by searching for a low dimensional projection of the data that has the closest
possible equivalent fuzzy topological structure.

The details for the underlying mathematics can be found in our paper on ArXiv:

Mclnnes, L, Healy, J, UMAP: Uniform Manifold Approximation and Projection for Dimension Reduction,
ArXiv e-prints 1802.03426, 2018

You can find the software on github.

Installation

Best data visualization
method in ML today

Scalable to millions of
data points

Used widely in biology

Based on higher-order
category theory of
simplicial sets & objects



Simplicial Category A

e Objects: ordinal numbers
e [n]=1{0,1,....n—1}

e Arrows: 2

» f:[m] — [n] 1

C 1 < . then f() < fU)) 0 0

e All morphisms can be built out of primitive injections/surjections
e 0;:[n] = [n+ 1] : injection skipping i

» 0;:|n] = [n — 1], surjection repeating 1



Simplicial Sets: Contravariant Functors
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Nerve of a Category

Recall a category is defined as a collection of objects, and a collection of
arrows between any pair of objects

A simplicial set is a contravariant functor mapping the simplicial category
to the category of sets

Any category can be mapped onto a simplicial set by constructing its
nerve

Intuitively, consider all sequences of composable morphisms of length n!



Published as a conference paper at ICLR 2020

ARE TRANSFORMERS UNIVERSAL APPROXIMATORS
OF SEQUENCE-TO-SEQUENCE FUNCTIONS? Permutation-equivariant

functions

Chulhee Yun™ Srinadh Bhojanapalli AnKkit Singh Rawat
MIT Google Research NY Google Research NY
chulheey(@mit.edu bsrinadh@google.com ankitsrawat@google.com
Sashank J. Reddi Sanjiv Kumar
Google Research NY Google Research NY
sashankl@google.com sanjivk@google.com
f g
X > Y > 4
ABSTRACT

Despite the widespread adoption of Transformer models for NLP tasks, the ex-
pressive power of these models i1s not well-understood. In this paper, we establish P P I &
that Transformer models are universal approximators of continuous permutation
equivariant sequence-to-sequence functions with compact support, which is quite

surprising given the amount of shared parameters in these models. Furthermore, v v v
using positional encodings, we circumvent the restriction of permutation equiv- X P N YP 3 Z P
ariance, and show that Transformer models can universally approximate arbitrary f g

continuous sequence-to-sequence functions on a compact domain. Interestingly,
our proof techniques clearly highlight the different roles of the self-attention and
the feed-forward layers in Transformers. In particular, we prove that fixed width
self-attention layers can compute contextual mappings of the input sequences,
playing a key role in the universal approximation property of Transformers. Based
on this insight from our analysis, we consider other simpler alternatives to self-
attention layers and empirically evaluate them.



h
Atn(X) = X+ WHW{X-o[WiX)TWHX]
1=1
FF(X) = Attn(X)+ Wy -ReLU(W; - Attn(X) + bi17

Definition 32. The category Cp of Transformer models is defined as follows:

» The objects Obj(C) are defined as vectors X € R4*™ denoting n-length sequences of tokens of dimension d.

* The arrows or morphisms of the category Cr are defined as a family of sequence-to-sequence functions and
defined as:

Thmr = [ f : R 5 RY™ | where f(X P) = X P, for some permutation matrix P}



Nerve of the Category of Transformers

e Since Transformers define a category over Euclidean spaces of
permutation-equivariant functions, we can construct its nerve

* Consider all compositions of Transformers building blocks of length n
* This construction maps the category of Transformers into a simplicial set
e |t is a full and faithful embedding of Transformers as simplicial sets

 However, simplicial sets cannot be faithfully mapped back to ordinary
categories



Simplicial Sets vs. Categories

Any category can be embedded faithfully into a simplicial set using its
nerve

The embedding is full and faithful (perfect reconstruction)
Unfortunately, the converse is not possible

Given a simplicial set, the left adjoint functor that maps it into a category
IS lossy!

GAIA (in theory!) is more powerful than existing generative Al formalisms



Summary

Deep learning faces an energy crisis

Architectures like Transformers are fundamentally limited!
We need a better framework: GAIA is one possible approach
Builds on higher-order category theory of simplicial sets

GAIA is a theoretical framework — not yet an actual working system!



Initial Object Final Object

A covariant functor F'  is representable iff A contravariant functor F' is representable iff
its category of elements [ F' ~ / C(c,-) =c/C its category of elements [ F ~ / C(-,c)

has an initial object has a final object

Category of Elements: For any set-valued functor F' : C — Set
Objects: (c, X), where c is a category object, and x is an element of Fc
Arrows: (c, X) —> (c’, y) where f: ¢ -> ¢’ is a morphism in C so that F(f)(x) = y (covariant)

Arrows: (c, X) —> (c’, y) and f: c-> ¢’ is a morphism in C so that F(f)(y) = x (contravariant)



/ | F is the powerset functor / | \
Inductive Conductive

Inference over Inference over
Well-Founded non-well-

\ Sets \ founded sets /

. . Active learning
Passive learning . .
. from experimentation
from observation

(Causal inference, RL)




/C F(e,c) /CF((:, c)

/ Bifunctors F : C? x C — D / \

Ends
\ Distances in generalized metric spaces

Topological data analysis Probabilistic Generative Models
Manifold learning

Coends




“The true logic of
this world lies in the
calculus of probabilities”

James Clerk Maxwell

Scottish Scientist
1831-1879




Conjecture: The “true logic” of Generative Al
lies in the Calculus of (Co)Ends

" London Mathematical Society

C
Lecture Note Series j F(c, c) J F(c,c)
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Universal Causality

[Mahadevan, Entropy, 2023]

Pollution in New Delhi, India

COVID-19 |
Overpopulation Lockdown Farming
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An Impossibility Theorem for Clustering

Jon Kleinberg
Department of Computer Science

Cornell University * Three properties
Ithaca NY 14853

e Scale invariance
Abstract

Although the study of clustering is centered around an intuitively * MOﬂOtOﬂlClty
compelling goal, it has been very difficult to develop a unified

framework for reasoning about it at a technical level, and pro-

foundly diverse approaches to clustering abound in the research ° SurjeCtiVity
community. Here we suggest a formal perspective on the difficulty

in finding such a unification, in the form of an impossibility theo-

rem: for a set of three simple properties, we show that there is no

clustering function satistying all three. Relaxations ot these prop-

erties expose some of the interesting (and unavoidable) trade-offs

at work in well-studied clustering techniques such as single-linkage,

sum-of-pairs, k-means, and k-median.
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Characterization, Stability and Convergence of Hierarchical
Clustering Methods

Gunnar Carlsson GUNNAR(@MATH.STANFORD.EDU
Facundo Mémoli* MEMOLI@MATH.STANFORD.EDU
Department of Mathematics

Stanford University

Stanford, CA 94305

Editor: Ulrike von Luxburg

Abstract

We study hierarchical clustering schemes under an axiomatic view. We show that within this frame-
work, one can prove a theorem analogous to one of Kleinberg (2002), in which one obtains an
existence and uniqueness theorem instead of a non-existence result. We explore further properties
of this unique scheme: stability and convergence are established. We represent dendrograms as
ultrametric spaces and use tools from metric geometry, namely the Gromov-Hausdorft distance, to
quantify the degree to which perturbations in the input metric space affect the result of hierarchical
methods.

Keywords: clustering, hierarchical clustering, stability of clustering, Gromov-Hausdorftf distance



Quantum Computing in Categories

PICTURING
QUANTUM
PROCESSES

A First Course in Quantum Theory and
Diagrammatic Reasoning

BOB COECKE AND ALEKS KISSINGER

A categorical semantics of quantum protocols

Samson Abramsky and Bob Coecke

Oxford University Computing Laboratory,
Wolfson Building, Parks Road, Oxford OX1 3QD, UK.

samson.abramsky - bob.coecke@comlab.ox.ac.uk

Abstract

We study quantum information and computation from a
novel point of view. Qur approach is based on recasting
the standard axiomatic presentation of quantum mechan-
ics, due to von Neumann (28], at a more abstract level, of
compact closed categories with biproducts. We show how
the essential structures found in key quantum information

protocols such as teleportation 5], logic-gate teleportation

[12], and entanglement swapping [29] can be captured at
this abstract level. Moreover, from the combination of the
— apparently purely qualitative — structures of compact
closure and biproducts there emerge ‘scalars’ and a ‘Born
rule’. This abstract and structural point of view opens up
new possibilities for describing and reasoning about quan-
tum systems. It also shows the degrees of axiomatic free-
dom: we can show what requirements are placed on the
(semi)ring of scalars C(1,1), where C is the category and
I is the tensor unit, in order to perform various proto-
cols such as teleportation. Qur formalism captures both
the information-flow aspect of the protocols 8, 9], and the

tation [12], and entanglement swapping [29]. The 1deas
illustrated in these protocols form the basis for novel and
potentially very important applications to secure and fault-
tolerant communication and computation [7, 12, 20].

We now give a thumbnail sketch of teleportation to mo-
tivate our introductory discussion. (A more formal ‘stan-
dard’ presentation 1s given in Section 2. The — radically
different — presentation in our new approach appears in
Section 9.) Teleportation involves using an entangled pair
of qubits (qa,gp) as a kind of communication channel to
transmit an unknown qubit ¢ from a source A (‘Alice’) to a
remote target B (‘Bob’). A has g and g4, while B has ¢g.
We firstly entangle g4 and ¢ at A (by performing a suitable
unitary operation on them), and then perform a measure-
ment on g4 and qm This forces a ‘collapse’ in g because
of its entanglement with g4. We then send two classical
bits of information from A to B, which encode the four
possible results of the measurement we performed on ¢ and
qa. Based on this classical communication, B then per-
forms a ‘correction’ by applying one of four possible oper-
ations (unitary transformations) to ¢p, after which gp has



D

DisCoPy

The Python toolkit for computing with string diagrams

DisCoPy is a Python toolkit for computing with string diagrams.

° Documentation: https://docs.discopy.org
s Repository: https://github.com/discopy/discopy

Why?
Applied category theory is information plumbing. It's boring... but plumbers save more

lives than doctors.

As string diagrams become as ubiquitous as matrices, they need their own fundamental
package: DisCoPy.

How?

DisCoPy began as an implementation of:

@ DisCoCat (distributional compositional categorical) models,
s and QNLP (quantum natural language processing).

This application has now been packaged into its own library, lambeq.

Who?

° Giovanni de Felice (CEO)

° Alexis Toumi (COQ)

° Richie Yeung (CFO)

° Boldizsar Podér (CTO)

° Bob Coecke (Honorary President)

Want to contribute or just ask us a question? Get in touch on Discord!
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