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Chess

Starting position
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Chess

White plays g1f3
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Chess

Black plays b7b6
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Chess

White plays d2d4
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Chess

Black plays c8b7
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RBC

Starting position of RBC
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RBC

Black chooses sense region e3
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RBC

Information gained from sense
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RBC

Black plays e7e5
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RBC

Where should black sense next?
Given current history: sense e3, observe Pe4, move e7e5
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RBC

Black chooses sense region c2
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RBC

No new information gained from sense!
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RBC

Where should black move next?
Given current history: sense e3, observe Pe4, move e7e5, sense c2,
observe no new information
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RBC

Black plays d7d5
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RBC

Black plays d7d5

Game proceeds similarly. Additional RBC details: captures, null moves.
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Outline

1. Challenges of RBC

2. Baseline agent: StrangeFish

3. Our agent: Fianchetto

4. Competition results and analysis

5. Conclusion

Shivaram Kalyanakrishnan (2024) Reconnaissance Blind Chess 4 / 31



4/31

Outline

1. Challenges of RBC

2. Baseline agent: StrangeFish

3. Our agent: Fianchetto

4. Competition results and analysis

5. Conclusion

Shivaram Kalyanakrishnan (2024) Reconnaissance Blind Chess 4 / 31



5/31

Board Games and AI

Chess (CHH02) [1] Backgammon (T94) [2]

Go (S+16) [3]
[1] https://www.publicdomainpictures.net/en/view-image.php?image=55671&picture=backgammon
[2] https://www.publicdomainpictures.net/pictures/80000/velka/chess-board-and-pieces.jpg.
[3] https://upload.wikimedia.org/wikipedia/commons/thumb/5/56/Lee_Sedol_%28B%29_vs_AlphaGo_%28W%29_-_Game_1.
svg/734px-Lee_Sedol_%28B%29_vs_AlphaGo_%28W%29_-_Game_1.svg.png. CC image courtesy of Wesalius on WikiMedia Commons
licensed under CC-BY-SA-4.0.
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Games of Imperfect Information

Scrabble (S02) [1] Poker (M+17,BS19) [2]

Stratego (P+22) [3] Rummy
[1] https://www.publicdomainpictures.net/en/free-download.php?image=scrabble-board&id=53283.
[2] https://www.publicdomainpictures.net/en/free-download.php?image=poker&id=84950
[3] https://upload.wikimedia.org/wikipedia/commons/0/05/Stratego.png. CC image courtesy of Andreas Kaufmann on WikiMedia
Commons licensed under CC-BY-SA-3.0.
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Challenge: States → Information sets
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Why is RBC Especially Hard?

Private versus public/shared information.
Almost all information in RBC is private.

Game horizon.
On average 50–60 in RBC between good players; can go into 100s.

How many opponent histories aliased into agent’s information set?
Estimated 1068 for RBC (MGL18); 104 in Poker.

But Chess is so well-understood. Does that help?
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RBC: Like Chess and also Unlike Chess

Potentially successful move in
RBC, bad in Chess.

Good move in Chess,
bad in RBC.
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Outline

1. Challenges of RBC

2. Baseline agent: StrangeFish

3. Our agent: Fianchetto

4. Competition results

5. Conclusion

Shivaram Kalyanakrishnan (2024) Reconnaissance Blind Chess 10 / 31



11/31

Primitive: Maintaining a Board Set B

Before sense: |B| = 21 Sense action After sense: |B| = 13

Before sense: |B| = 21 Sense action After sense: |B| = 1
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StrangeFish 2019 Baseline

Score function takes a single board as input and provides the score for each
move on this board.
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StrangeFish 2019

Moving strategy: choose the move that maximises an aggregate score
combining (weighted) mean, min, and max scores over B.
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StrangeFish 2019

Sensing strategy: choose a sense square to maximise a combination of
board set reduction and potential change in value.
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Outline

1. Challenges of RBC

2. Baseline agent: StrangeFish

3. Our agent: Fianchetto

4. Competition results

5. Conclusion
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Fianchetto v1: Using LC0 instead of Stockfish

Leela Chess Zero (LC0) (PL21) neural network instead of StockFish
(RCK21) for faster evaluation.
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Fianchetto v1: Using LC0 instead of Stockfish

Achieves≈ 30x speedup of no. of boards evaluated/sec through batching

Time per Effective no. of boards evaluated / s
engine call (s) Without batching With batching

Stockfish 0.005 200 3200
(16 Threads)

Lc0
(1GB GPU) 0.321 93 95232

(batch size = 1024)

Table: Comparison of throughput of Stockfish and Lc0, performed on a desktop
machine with Intel Core i5-4690 CPU@3.50GHz and Nvidia GeForce GTX 980 GPU.
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Fianchetto v1: Using LC0 instead of Stockfish

Risk of overfitting to Chess!

Small n/w Medium n/w Large n/w

Chess Rating 1416 1453 1572
RBC Rating 1248 1502 1350

Table: Comparison of ratings of different-sized Lc0 networks.
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Fianchetto v2: Persistent Board Belief
Belief state b is a weight/probability distribution over S.
Critical for intelligent decision making.
At any stage, support of b (all reachable states) can be calculated exactly.

Under StrangeFish: b(s) ∝ sigmoid(StockFishScore(s)).
Ignores previous belief, opponent’s policy.

Suppose b is belief state before Fianchetto’s move, and Fianchetto plays
move a. Then by basic probability, the belief state b′ after the move is:

b′(s′) =
∑
s

b(s)1[(s, a) leads to s′].

Let b′′ be the belief state after the opponent has played, Fianchetto has
sensed observation z. By Bayes’ Rule,

b′′(s′) = P{s′|b′, z} =
∑
a

P{s′|b′, a, z}
∑
s

P{a|s}P{s|b′};

P{s′|b′, a, z} ∝ P{z|s′, a}
∑
s

P{s′|s, a}P{s|b′}.

But what is P{a|s} (the opponent model)?
We assume the opponent plays according to LC0!
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Fianchetto v2: Persistent Board Belief

Probability associated with true state by Fianchetto (v2) and StrangeFish
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Fianchetto v3: RBC-Specific Incentives

Supplement LC0 evaluation to promote RBC-specific “sneak attacks”.

Low risk, large incentive. High risk, small incentive.
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Fianchetto v4: Board Set Size
Add dynamically weighted uniform dist. to opponent’s move probabilities.
Adjust weightage of expected board set reduction in sense strategy.

Average information set size in games played on the RBC server.

Shivaram Kalyanakrishnan (2024) Reconnaissance Blind Chess 20 / 31



21/31

Outline

1. Challenges of RBC

2. Baseline agent: StrangeFish

3. Our agent: Fianchetto

4. Competition results and analysis

5. Conclusion
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NeurIPS 2021 Tournament

Round robin tournament
between 18 bots

Pairwise 60 games
(equally split as black and
white)

Positive winning record of
atleast 66% against every
other bot in the
tournament

Dominant performance
with overall win ratio
above 90%

Fianchetto (1759) Score

StrangeFish2 (1662) 41-19
penumbra (1584) 40-20
Kevin (1544) 40-20
Oracle (1503) 51-9
Gnash (1454) 49-11
Marmot (1315) 56-4
DynamicEntropy (1299) 59-1
wbernar5 (1219) 58-2
Frampt (1208) 59-1
GarrisonNRL (1140) 59-1
trout (1127) 59-1
callumcanavan (1066) 60-0
attacker (1049) 60-0
URChIn (854) 60-0
armandli (777) 60-0
random (753) 60-0
ai_games_cvi (288) 60-0

Overall 931-89

Table: NeurIPS 2021 RBC Tournament results
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Intermediate Versions (evaluated post-competition)

Version V0 SF2 Or tr att ran Overall

V0 30-30 16-44 39-21 57-3 56-4 60-0 258-102
V1 24-36 13-47 36-24 58-2 50-10 59-1 240-120
V2 39-21 35-25 46-14 59-1 58-2 60-0 297-63
V3 48-12 32-28 47-13 59-1 58-2 59-1 303-57
V4 48-12 35-25 47-13 59-1 60-0 60-0 309-51

Table: Win-loss scores from a 60-game match between row agent and column agent.
V0 is the same as StrangeFish; its row is populated using its last 60 games in a
specified window in November-December 2021 on the RBC server. The column for V0
is obtained locally, whereas all other columns (SF2 = StrangeFish2, Or = Oracle, tr =
trout, att = attacker, ran = random) are obtained from games played on the server.
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NeurIPS 2022 Tournament
StrangeFish2 (1762) 21-34-5

Fianchetto (1644) Score

Kevin (1623) 31-0-29
Chateaux (1621) 18-0-42
ROOKie (1551) 37-18-5
Oracle (1465) 49-9-2
Marmot (1329) 52-0-8
JKU-CODA (1283) 51-0-9
DynamicEntropy (1194) 58-0-2
SomeRegret (1184) 55-0-5
trout (1116) 60-0-0
attacker (1099) 59-0-1
GarrisonNRL (1039) 57-0-3
uccchess (1025) 49-8-3
random (893) 60-0-0
arandombot (598) 60-0-0
srcork (590) 60-0-0
uccch (581) 60-0-0

Overall 837-168-15

Table: NeurIPS 2022 RBC Tournament results
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Blunders!

Played Move Result Best Move

Played Move Result Best Move

Our LC0 evaluation misled us in these cases. But why didn’t it in 2021?
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Blunders Happened in 2021, Too!

Played Move Result Best Move

We had not paid attention to the 2021 blunders because . . . we won anyway!
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Fix: Next-state Evaluation for Top Few Actions
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Fianchetto Updated vs. StrangeFish2

Agents Win Draw Loss
Fianchetto (old) vs. StrangeFish2 248 25 227

Fianchetto (updated) vs. StrangeFish2 300 28 172

Table: Performance of (2022) competition version and updated version of Fianchetto
against StrangeFish2 (released after 2022 competition) over 500 games.
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Outline

1. Challenges of RBC

2. Baseline agent: StrangeFish

3. Our agent: Fianchetto

4. Competition results and analysis

5. Conclusion
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Summary and Outlook
RBC a new, exciting prospect for research on imperfect information
games. Almost no public information, long horizon, constraints on
compute time, . . . .

Fianchetto a thoughtfully-engineered agent with sound basis, but subject
to questionable assumptions!

How to best transfer knowledge from Chess to RBC?
MCTS—workhorse of modern game-playing—doubly confounded by
hidden state and compute time in RBC.
How to transfer the successes of deep learning on sequential data
(speech, NLP) to RBC?
How to gather lots of useful training data for RBC?
Benchmark RBC against humans.

Lots of science waiting to be done on RBC!

Thank you!
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