On Designing a Winning Agent for Reconnaissance Blind Chess (RBC)

Shivaram Kalyanakrishnan

Department of Computer Science and Engineering
Indian Institute of Technology Bombay

February 2024

Contributors

Mohammad Taufeeque

Anvay Shah

Nitish Tongia

Puranjay Datta

Chess

Starting position

Chess

Chess

Chess

Chess

RBC

RBC

Black chooses sense region e3

RBC

Information gained from sense

RBC

RBC

Where should black sense next?

Given current history: sense e3, observe Pe4, move e7e5

RBC

Black chooses sense region c2

RBC

No new information gained from sense!

RBC

Where should black move next?

Given current history: sense e3, observe Pe4, move e7e5, sense c2, observe no new information

RBC

RBC

Game proceeds similarly. Additional RBC details: captures, null moves.

Outline

1. Challenges of RBC
2. Baseline agent: StrangeFish
3. Our agent: Fianchetto
4. Competition results and analysis
5. Conclusion

Outline

1. Challenges of RBC

2. Baseline agent: StrangeFish
3. Our agent: Fianchetto
4. Competition results and analysis
5. Conclusion

Board Games and AI

Chess (CHHO2) [1]

Backgammon (T94) [2]

Go (S+16) [3]
[1] https://www.publicdomainpictures.net/en/view-image.php?image=55671\&picture=backgammon
[2] https://www.publicdomainpictures.net/pictures/80000/velka/chess-board-and-pieces.jpg.
[3] https://upload.wikimedia.org/wikipedia/commons/thumb/5/56/Lee_Sedol_\(B\)_vs_AlphaGo_\(W\)_-_Game_1. svg/734px-Lee_Sedol_\%28B\%29_vs_AlphaGo_\%28W\%29_-_Game_1.svg.png. CC image courtesy of Wesalius on WikiMedia Commons licensed under CC-BY-SA-4.0.

Games of Imperfect Information

Scrabble (SO2) [1]

Stratego (P+22) [3]

Poker (M+17,BS19) [2]

Rummy

[1] https://www.publicdomainpictures.net/en/free-download.php?image=scrabble-board\&id=53283.
[2] https://www.publicdomainpictures.net/en/free-download.php?image=poker\&id=84950
[3] https://upload.wikimedia.org/wikipedia/commons/0/05/Stratego.png. CC image courtesy of Andreas Kaufmann on WikiMedia Commons licensed under CC-BY-SA-3.0.

Challenge: States \rightarrow Information sets

Challenge: States \rightarrow Information sets

Challenge: States \rightarrow Information sets

Why is RBC Especially Hard?

- Private versus public/shared information. Almost all information in RBC is private.

Why is RBC Especially Hard?

- Private versus public/shared information. Almost all information in RBC is private.
- Game horizon.

On average 50-60 in RBC between good players; can go into 100s.

Why is RBC Especially Hard?

- Private versus public/shared information. Almost all information in RBC is private.
- Game horizon.

On average 50-60 in RBC between good players; can go into 100 s.

- How many opponent histories aliased into agent’s information set? Estimated 10^{68} for RBC (MGL18); 10^{4} in Poker.

Why is RBC Especially Hard?

- Private versus public/shared information. Almost all information in RBC is private.
- Game horizon.

On average 50-60 in RBC between good players; can go into 100 s.

- How many opponent histories aliased into agent's information set? Estimated 10^{68} for RBC (MGL18); 10^{4} in Poker.
- But Chess is so well-understood. Does that help?

RBC: Like Chess and also Unlike Chess

Outline

1. Challenges of RBC

2. Baseline agent: StrangeFish
3. Our agent: Fianchetto
4. Competition results
5. Conclusion

Primitive: Maintaining a Board Set B

Before sense: $|B|=21$

Sense action

After sense: $|B|=13$

Primitive: Maintaining a Board Set B

Before sense: $|B|=21$

Before sense: $|B|=21$

StrangeFish 2019 Baseline

Score function takes a single board as input and provides the score for each move on this board.

StrangeFish 2019

Moving strategy: choose the move that maximises an aggregate score combining (weighted) mean, min, and max scores over B.

StrangeFish 2019

Sensing strategy: choose a sense square to maximise a combination of board set reduction and potential change in value.

Outline

1. Challenges of RBC
2. Baseline agent: StrangeFish
3. Our agent: Fianchetto
4. Competition results
5. Conclusion

Fianchetto v1: Using LCO instead of Stockfish

- Leela Chess Zero (LCO) (PL21) neural network instead of StockFish (RCK21) for faster evaluation.

Fianchetto v1: Using LC0 instead of Stockfish

- Achieves $\approx 30 x$ speedup of no. of boards evaluated/sec through batching

	Time per engine call (s)	Effective no. of boards evaluated / s Without batching With batching	
Stockfish	0.005	200	3200 $(16$ Threads)
Lc0 $(1 G B ~ G P U)$	0.321	93	95232 (batch size $=1024)$

Table: Comparison of throughput of Stockfish and LcO, performed on a desktop machine with Intel Core i5-4690 CPU@3.50GHz and Nvidia GeForce GTX 980 GPU.

Fianchetto v1: Using LCO instead of Stockfish

- Achieves $\approx 30 x$ speedup of no. of boards evaluated/sec through batching

	Time per engine call (s)	Effective no. of boards evaluated / s Without batching With batching	
Stockfish	0.005	200	3200 (16 Threads)
Lc0 $(1 G B ~ G P U)$	0.321	93	95232 (batch size $=1024)$

Table: Comparison of throughput of Stockfish and LcO, performed on a desktop machine with Intel Core i5-4690 CPU@3.50GHz and Nvidia GeForce GTX 980 GPU.

Fianchetto v1: Using LCO instead of Stockfish

- Risk of overfitting to Chess!

	Small n/w	Medium n/w	Large n / w
Chess Rating	1416	1453	1572
RBC Rating	1248	1502	1350

Table: Comparison of ratings of different-sized Lc0 networks.

Fianchetto v1: Using LCO instead of Stockfish

- Risk of overfitting to Chess!

	Small n/w	Medium n/w	Large n / w
Chess Rating	1416	1453	1572
RBC Rating	1248	1502	1350

Table: Comparison of ratings of different-sized Lc0 networks.

Fianchetto v2: Persistent Board Belief

- Belief state b is a weight/probability distribution over S.
- Critical for intelligent decision making.
- At any stage, support of b (all reachable states) can be calculated exactly.

Fianchetto v2: Persistent Board Belief

- Belief state b is a weight/probability distribution over S.
- Critical for intelligent decision making.
- At any stage, support of b (all reachable states) can be calculated exactly.
- Under StrangeFish: $b(s) \propto$ sigmoid(StockFishScore(s)).

Fianchetto v2: Persistent Board Belief

- Belief state b is a weight/probability distribution over S.
- Critical for intelligent decision making.
- At any stage, support of b (all reachable states) can be calculated exactly.
- Under StrangeFish: $b(s) \propto$ sigmoid(StockFishScore(s)).
- Ignores previous belief, opponent's policy.

Fianchetto v2: Persistent Board Belief

- Belief state b is a weight/probability distribution over S.
- Critical for intelligent decision making.
- At any stage, support of b (all reachable states) can be calculated exactly.
- Under StrangeFish: $b(s) \propto$ sigmoid(StockFishScore(s)).
- Ignores previous belief, opponent's policy.
- Suppose b is belief state before Fianchetto's move, and Fianchetto plays move a. Then by basic probability, the belief state b^{\prime} after the move is:

$$
b^{\prime}\left(s^{\prime}\right)=\sum_{s} b(s) \mathbb{1}\left[(s, a) \text { leads to } s^{\prime}\right]
$$

Fianchetto v2: Persistent Board Belief

- Belief state b is a weight/probability distribution over S.
- Critical for intelligent decision making.
- At any stage, support of b (all reachable states) can be calculated exactly.
- Under StrangeFish: $b(s) \propto$ sigmoid(StockFishScore(s)).
- Ignores previous belief, opponent's policy.
- Suppose b is belief state before Fianchetto's move, and Fianchetto plays move a. Then by basic probability, the belief state b^{\prime} after the move is:

$$
b^{\prime}\left(s^{\prime}\right)=\sum_{s} b(s) \mathbf{1}\left[(s, a) \text { leads to } s^{\prime}\right] .
$$

- Let $b^{\prime \prime}$ be the belief state after the opponent has played, Fianchetto has sensed observation z. By Bayes' Rule,

$$
\begin{aligned}
b^{\prime \prime}\left(s^{\prime}\right)= & \mathbb{P}\left\{s^{\prime} \mid b^{\prime}, z\right\} \\
& =\sum_{a} \mathbb{P}\left\{s^{\prime} \mid b^{\prime}, a, z\right\} \sum_{s} \mathbb{P}\{a \mid s\} \mathbb{P}\left\{s \mid b^{\prime}\right\} \\
\mathbb{P}\left\{s^{\prime} \mid b^{\prime}, a, z\right\} & \propto \mathbb{P}\left\{z \mid s^{\prime}, a\right\} \sum_{s} \mathbb{P}\left\{s^{\prime} \mid s, a\right\} \mathbb{P}\left\{s \mid b^{\prime}\right\} .
\end{aligned}
$$

Fianchetto v2: Persistent Board Belief

- Belief state b is a weight/probability distribution over S.
- Critical for intelligent decision making.
- At any stage, support of b (all reachable states) can be calculated exactly.
- Under StrangeFish: $b(s) \propto$ sigmoid(StockFishScore(s)).
- Ignores previous belief, opponent's policy.
- Suppose b is belief state before Fianchetto's move, and Fianchetto plays move a. Then by basic probability, the belief state b^{\prime} after the move is:

$$
b^{\prime}\left(s^{\prime}\right)=\sum_{s} b(s) \mathbb{1}\left[(s, a) \text { leads to } s^{\prime}\right]
$$

- Let $b^{\prime \prime}$ be the belief state after the opponent has played, Fianchetto has sensed observation z. By Bayes' Rule,

$$
\begin{aligned}
b^{\prime \prime}\left(s^{\prime}\right) & =\mathbb{P}\left\{s^{\prime} \mid b^{\prime}, z\right\} \\
& =\sum_{a} \mathbb{P}\left\{s^{\prime} \mid b^{\prime}, a, z\right\} \sum_{s} \mathbb{P}\{a \mid s\} \mathbb{P}\left\{s \mid b^{\prime}\right\} \\
\mathbb{P}\left\{s^{\prime} \mid b^{\prime}, a, z\right\} & \propto \mathbb{P}\left\{z \mid s^{\prime}, a\right\} \sum_{s} \mathbb{P}\left\{s^{\prime} \mid s, a\right\} \mathbb{P}\left\{s \mid b^{\prime}\right\} .
\end{aligned}
$$

- But what is $\mathbb{P}\{a \mid s\}$ (the opponent model)?

Fianchetto v2: Persistent Board Belief

- Belief state b is a weight/probability distribution over S.
- Critical for intelligent decision making.
- At any stage, support of b (all reachable states) can be calculated exactly.
- Under StrangeFish: $b(s) \propto$ sigmoid(StockFishScore(s)).
- Ignores previous belief, opponent's policy.
- Suppose b is belief state before Fianchetto's move, and Fianchetto plays move a. Then by basic probability, the belief state b^{\prime} after the move is:

$$
b^{\prime}\left(s^{\prime}\right)=\sum_{s} b(s) \mathbf{1}\left[(s, a) \text { leads to } s^{\prime}\right]
$$

- Let $b^{\prime \prime}$ be the belief state after the opponent has played, Fianchetto has sensed observation z. By Bayes' Rule,

$$
\begin{aligned}
b^{\prime \prime}\left(s^{\prime}\right)= & \mathbb{P}\left\{s^{\prime} \mid b^{\prime}, z\right\} \\
& =\sum_{a} \mathbb{P}\left\{s^{\prime} \mid b^{\prime}, a, z\right\} \sum_{s} \mathbb{P}\{a \mid s\} \mathbb{P}\left\{s \mid b^{\prime}\right\} \\
\mathbb{P}\left\{s^{\prime} \mid b^{\prime}, a, z\right\} & \propto \mathbb{P}\left\{z \mid s^{\prime}, a\right\} \sum_{s} \mathbb{P}\left\{s^{\prime} \mid s, a\right\} \mathbb{P}\left\{s \mid b^{\prime}\right\} .
\end{aligned}
$$

- But what is $\mathbb{P}\{a \mid s\}$ (the opponent model)? We assume the opponent plays according to LCO!

Fianchetto v2: Persistent Board Belief

Probability associated with true state by Fianchetto (v2) and StrangeFish

Fianchetto v3: RBC-Specific Incentives

- Supplement LCO evaluation to promote RBC-specific "sneak attacks".

Low risk, large incentive.

High risk, small incentive.

Fianchetto v4: Board Set Size

- Add dynamically weighted uniform dist. to opponent's move probabilities.
- Adjust weightage of expected board set reduction in sense strategy.

Average information set size in games played on the RBC server.

Outline

1. Challenges of RBC

2. Baseline agent: StrangeFish
3. Our agent: Fianchetto
4. Competition results and analysis
5. Conclusion

NeurIPS 2021 Tournament

- Round robin tournament between 18 bots
- Pairwise 60 games (equally split as black and white)
- Positive winning record of atleast 66\% against every other bot in the tournament
- Dominant performance with overall win ratio above 90\%

Fianchetto (1759)	Score
StrangeFish2 (1662)	$41-19$
penumbra (1584)	$40-20$
Kevin (1544)	$40-20$
Oracle (1503)	$51-9$
Gnash (1454)	$49-11$
Marmot (1315)	$56-4$
DynamicEntropy (1299)	$59-1$
wbernar5 (1219)	$58-2$
Frampt (1208)	$59-1$
GarrisonNRL (1140)	$59-1$
trout (1127)	$59-1$
callumcanavan (1066)	$60-0$
attacker (1049)	$60-0$
URChIn (854)	$60-0$
armandli (777)	$60-0$
random (753)	$60-0$
ai_games_cvi (288)	$60-0$
Overall	$\mathbf{9 3 1 - 8 9}$

Table: NeurIPS 2021 RBC Tournament results

Intermediate Versions (evaluated post-competition)

Version	V0	SF2	Or	tr	att	ran	Overall
V0	$30-30$	$16-44$	$39-21$	$57-3$	$56-4$	$60-0$	$258-102$
V1	$24-36$	$13-47$	$36-24$	$58-2$	$50-10$	$59-1$	$240-120$
V2	$39-21$	$35-25$	$46-14$	$59-1$	$58-2$	$60-0$	$297-63$
V3	$48-12$	$32-28$	$47-13$	$59-1$	$58-2$	$59-1$	$303-57$
V4	$48-12$	$35-25$	$47-13$	$59-1$	$60-0$	$60-0$	$309-51$

Table: Win-loss scores from a 60-game match between row agent and column agent. V0 is the same as StrangeFish; its row is populated using its last 60 games in a specified window in November-December 2021 on the RBC server. The column for V0 is obtained locally, whereas all other columns (SF2 = StrangeFish2, Or = Oracle, tr = trout, att = attacker, ran = random) are obtained from games played on the server.

NeurIPS 2022 Tournament

StrangeFish2 (1762)	$21-34-5$
Fianchetto (1644)	Score
Kevin (1623)	$31-0-29$
Chateaux (1621)	$18-0-42$
Rookie (1551)	$37-18-5$
Oracle (1465)	$49-9-2$
Marmot (1329)	$52-0-8$
JKU-CODA (1283)	$51-0-9$
DynamicEntropy (1194)	$58-0-2$
SomeRegret (1184)	$55-0-5$
trout (1116)	$60-0-0$
attacker (1099)	$59-0-1$
GarrisonNRL (1039)	$57-0-3$
uccchess (1025)	$49-8-3$
random (893)	$60-0-0$
arandombot (598)	$60-0-0$
srcork (590)	$60-0-0$
uccch (581)	$60-0-0$
Overall	$\mathbf{8 3 7 - 1 6 8 - 1 5}$

Table: NeurIPS 2022 RBC Tournament results

Blunders!

Played Move

Result

Best Move

Blunders!

Played Move

Played Move

Result

Result

Best Move

Best Move

Blunders!

Played Move

Played Move

Result

Result

Best Move

Best Move

Our LCO evaluation misled us in these cases. But why didn't it in 2021?

Blunders Happened in 2021, Too!

Played Move

Result

Best Move

Blunders Happened in 2021, Too!

Played Move

Result

Best Move

We had not paid attention to the 2021 blunders because ...

Blunders Happened in 2021, Too!

Played Move

Result

Best Move

We had not paid attention to the 2021 blunders because ... we won anyway!

Fix: Next-state Evaluation for Top Few Actions

Fianchetto Updated vs. StrangeFish2

Agents	Win	Draw	Loss
Fianchetto (old) vs. StrangeFish2	248	25	227
Fianchetto (updated) vs. StrangeFish2	300	28	172

Table: Performance of (2022) competition version and updated version of Fianchetto against StrangeFish2 (released after 2022 competition) over 500 games.

Outline

1. Challenges of RBC
2. Baseline agent: StrangeFish
3. Our agent: Fianchetto
4. Competition results and analysis
5. Conclusion

Summary and Outlook

- RBC a new, exciting prospect for research on imperfect information games. Almost no public information, long horizon, constraints on compute time,

Summary and Outlook

- RBC a new, exciting prospect for research on imperfect information games. Almost no public information, long horizon, constraints on compute time,
- Fianchetto a thoughtfully-engineered agent with sound basis, but subject to questionable assumptions!

Summary and Outlook

- RBC a new, exciting prospect for research on imperfect information games. Almost no public information, long horizon, constraints on compute time,
- Fianchetto a thoughtfully-engineered agent with sound basis, but subject to questionable assumptions!
- How to best transfer knowledge from Chess to RBC?
- MCTS-workhorse of modern game-playing-doubly confounded by hidden state and compute time in RBC.
- How to transfer the successes of deep learning on sequential data (speech, NLP) to RBC?
- How to gather lots of useful training data for RBC?
- Benchmark RBC against humans.

Summary and Outlook

- RBC a new, exciting prospect for research on imperfect information games. Almost no public information, long horizon, constraints on compute time,
- Fianchetto a thoughtfully-engineered agent with sound basis, but subject to questionable assumptions!
- How to best transfer knowledge from Chess to RBC?
- MCTS-workhorse of modern game-playing-doubly confounded by hidden state and compute time in RBC.
- How to transfer the successes of deep learning on sequential data (speech, NLP) to RBC?
- How to gather lots of useful training data for RBC?
- Benchmark RBC against humans.
- Lots of science waiting to be done on RBC!

Summary and Outlook

- RBC a new, exciting prospect for research on imperfect information games. Almost no public information, long horizon, constraints on compute time,
- Fianchetto a thoughtfully-engineered agent with sound basis, but subject to questionable assumptions!
- How to best transfer knowledge from Chess to RBC?
- MCTS-workhorse of modern game-playing-doubly confounded by hidden state and compute time in RBC.
- How to transfer the successes of deep learning on sequential data (speech, NLP) to RBC?
- How to gather lots of useful training data for RBC?
- Benchmark RBC against humans.
- Lots of science waiting to be done on RBC!

Thank you!

References

PL21 Gian-Carlo Pascutto and Gary Linscott. Leela Chess Zero. URL: https://Iczero.org. 2021.
RCK21 Tord Romstad, Marco Costalba, and Joona Kiiski. Stockfish-Open Source Chess Engine. URL: https://stockfishchess.org. 2021.
T94 Gerald Tesauro. TD-Gammon, a Self-Teaching Backgammon Program, Achieves Master-Level Play. Neural Computation 6(2): 215-219, 1994.
CHH02 Murray Campbell, A. Joseph Hoane Jr., Feng-hsiung Hsu. Deep Blue. Artificial Intelligence 134 (1-2): 57-83, 2002.
S+16 David Silver, Aja Huang, Chris J. Maddison, Arthur Guez, Laurent Sifre, George van den Driessche, Julian Schrittwieser, loannis Antonoglou, Veda Panneershelvam, Marc Lanctot, Sander Dieleman, Dominik Grewe, John Nham, Nal Kalchbrenner, Ilya Sutskever, Timothy Lillicrap, Madeleine Leach, Koray Kavukcuoglu, Thore Graepel, and Demis Hassabis. Mastering the game of $G o$ with deep neural networks and tree search. Nature 529: 484-489, 2016.
S02 Brian Sheppard. World-championship-caliber Scrabble. Artificial Intelligence 134 (1-2): 241-275, 2002.
BS19 Noam Brown and Tuomas Sandholm. Superhuman AI for multiplayer poker. Science 365 (6456): 885-890. 2019.
M+17 Matej Moravcík, Martin Schmid, Neil Burch, Viliam Lisý, Dustin Morrill, Nolan Bard, Trevor Davis, Kevin Waugh, Michael Johanson, and Michael H. Bowling. DeepStack: Expert-level artificial intelligence in heads-up no-limit poker. Science 356 (6337): 508-513, 2017.
MGL18 Jared Markowitz, Ryan W. Gardner, and Ashley J. Llorens. On the complexity of Reconnaissance Blind Chess. CoRR, abs/1811.03119, 2018.
P+22 Julien Perolat, Bart de Vylder, Daniel Hennes, Eugene Tarassov, Florian Strub, Vincent de Boer, Paul Muller, Jerome T. Connor, Neil Burch, Thomas Anthony, Stephen Mcaleer, Romuald Elie, Sarah H. Cen, Zhe Wang, Audrunas Gruslys, Aleksandra Malysheva, Mina Khan, Sherjil Ozair, Finbarr Timbers, Toby Pohlen Tom Eccles, Mark Rowland, Marc Lanctot, Jean-Bapriste Lespiau, Bilal Piot, Shayegan OmidShafiei, Edward Lockhart, Laurent Sifre, Nathalie Beauguerlange, Remi Munos, David Silver, Satinder Singh, Demis Hassabis, and Karl Tuyls. Mastering the game of Stratego with model-free multiagent reinforcement learning. Science 378 (6623): 990-996.

