
A Cubic-regularized Policy Newton Algorithm
for Reinforcement Learning

Prashanth L.A.†

Joint work with Mizhaan Maniyar†, Akash Mondal♯ and Shalabh Bhatnagar♯

† IIT Madras
♯ Indian Institute of Science

(To appear in AISTATS 2024)

1

1-slide summary

Cubic-regularized policy Newton (CR-PN)
• Gradient and Hessian estimates + bias/variance bounds
• SOSP convergence O(n(2−α)/2), α ∈ (0, 1) is Hölder exponent of w
• REINFORCE is known to converge to an FOSP

Approximate CR-PN
• Use gradient descent to solve a sub-problem in CR-PN + Hessian-vector
products enough

• SOSP convergence O(d
√
n polylog(n)).

Simulation experiments
• Cart-pole: CR-PN performs better than REINFORCE with linear features
• Mujoco: same conclusion with neural net features

2

Outline

Background
RL 101: finite-horizon MDP, policy gradient framework

Stochastic non-convex optimization: first and second-order
stationary points, stochastic gradient and Newton
algorithms

Our work
Cubic-regularized policy Newton (CR-PN): gradient and

Hessian estimation, estimation error bounds,
algorithm

Theoretical results: SOSP convergence, sample complexity
Approximate CR-PN: Computational efficiency, SOSP guarantee
Simulation experiments: Cart pole, Mujoco

3

Outline

Background
RL 101: finite-horizon MDP, policy gradient framework

Stochastic non-convex optimization: first and second-order
stationary points, stochastic gradient and Newton
algorithms

Our work
Cubic-regularized policy Newton (CR-PN): gradient and

Hessian estimation, estimation error bounds,
algorithm

Theoretical results: SOSP convergence, sample complexity
Approximate CR-PN: Computational efficiency, SOSP guarantee
Simulation experiments: Cart pole, Mujoco

3

Introduction

Markov Decision Processes (MDPs)

Basic Elements: Set of States S , Set of Actions A, Costs c(x,a)

Transition Probabilities:
P(s′|s,a)

Markov Property ∀i0, i1, . . . , s, s′,b0,b1 . . .,a,
P(sn+1 = s′ | sn = s,an = a, . . . , s0 = i0,a0 = b0) = P(s′|s,a)

n− 4 n− 3 n− 2 n− 1 n n+ 1 n+ 2

a

s s′

4

Reinforcement Learning (RL)

• RL: A class of learning problems in which an agent interacts with
a dynamic, stochastic, and incompletely known environment

• Goal: Learn an action-selection strategy, or policy, to optimize
some performance measure

• Interaction: Modeled as a Markov Decision Process (MDP)

5

Finite-horizon MDP

Policy: π(a|s) → probability of choosing action a in state s

Trajectory: τ := (s0,a0, . . . , aH−1, sH) has probability:

p(τ ;π) :=
(H−1∏
h=0

P(sh+1|sh,ah)π(ah|sh)
)
ρ(s0)

Optimal policy

π∗ = arg min
π

{
J(π) = Eτ∼p(τ ;π)

[H−1∑
h=0

γh−1 c(sh,ah) | π

]}
Value function Cost Policy

6

Finite-horizon MDP

Policy: π(a|s) → probability of choosing action a in state s

Trajectory: τ := (s0,a0, . . . , aH−1, sH) has probability:

p(τ ;π) :=
(H−1∏
h=0

P(sh+1|sh,ah)π(ah|sh)
)
ρ(s0)

Optimal policy

π∗ = arg min
π

{
J(π) = Eτ∼p(τ ;π)

[H−1∑
h=0

γh−1 c(sh,ah) | π

]}

Value function Cost Policy

6

Finite-horizon MDP

Policy: π(a|s) → probability of choosing action a in state s

Trajectory: τ := (s0,a0, . . . , aH−1, sH) has probability:

p(τ ;π) :=
(H−1∏
h=0

P(sh+1|sh,ah)π(ah|sh)
)
ρ(s0)

Optimal policy

π∗ = arg min
π

{
J(π) = Eτ∼p(τ ;π)

[H−1∑
h=0

γh−1 c(sh,ah) | π

]}
Value function Cost Policy

6

Policy gradient framework

7

Policy Gradient Setting

A class of parameterized stochastic (randomized) policies{
π(·|s; θ), s ∈ S, θ ∈ Rd

}
π(|sh; θ): probability distribution (parameterized by θ) over action
space rather than unique action for each state

Example: Boltzmann policies

π(a|s; θ) = exp (ψ(s,a)Tθ)∑
b∈A exp (ψ(s,b)Tθ) , ∀s ∈ S , ∀a ∈ A

Lot of interest in analyzing policy gradient algorithms, cf. (Agarwal et al. 2020; Sutton

et al. 1999; Papini et al. 2018; Vijayan and Prashanth 2021; Zhang et al. 2020; Kumar,

Koppel, and Ribeiro 2023)

8

Policy gradient

Setting: (θ policy parameter)

• Aim: minimize J(θ)

min
θ
J(θ) = Eτ∼p(τ ;π)

[H−1∑
h=0

γh−1c(sh,ah)
]

• PG update: θk+1 = θk − η∇̂J(θk)

Policy gradient estimation:

Q1) How to form ∇̂J(θn) in a finite horizon MDP?

Q2) What is the bias and variance of such an estimate?

9

Policy gradient

Setting: (θ policy parameter)

• Aim: minimize J(θ)

min
θ
J(θ) = Eτ∼p(τ ;π)

[H−1∑
h=0

γh−1c(sh,ah)
]

• PG update: θk+1 = θk − η∇̂J(θk)

Policy gradient estimation:

Q1) How to form ∇̂J(θn) in a finite horizon MDP?

Q2) What is the bias and variance of such an estimate?

9

Policy gradient: variants

Policy gradient:

θk+1 = θk − η∇̂J(θk)

Pro: Easy to implement, Con: Slow convergence near optima

Policy Newton (using gradient and Hessian estimates):

θk+1 = θk − η
(
∇̂2J(θk)

)−1
∇̂J(θk)

Pro: Faster convergence near optima, Con: Computational burden

Best of both: Perform a steepest-descent step for large gradients;
else take a step in a negative-curvature direction for ∇2f.

Cubic-regularized policy Newton→ does both to escape saddle points
(more details later)

10

Policy Newton algorithm

θk

Using policy πθk ,

sample/simulate

underlying system

Data Collection

Estimate∇J(θk)

Policy Gradient

Estimate∇2J(θk)

Policy Hessian

Update θk

Policy Update

θk+1

11

Likelihood ratio method

12

(Stochastic) Gradient Estimation

Huge literature; here will focus on likelihood ratio (LR) method, aka
score function (SF) method (other: perturbation analysis)

general setting: parameter appears in input distribution,
e.g., distribution over actions in randomized policy

Simple single r.v. X example: (pθ p.m.f. of X)

E[X] =
∑
x
xPθ(X = x) =

∑
x
xpθ(x),

Differentiating w.r.t. θ (assuming exchange),

dE[X]
dθ =

∑
x
xdPθ(X = x)

dθ =
∑
x
xd lnpθ(x)dθ pθ(x) = E

[
Xd lnpθ(X)dθ

]
,

so LR derivative estimator

Xd lnpθ(X)dθ .

13

(Stochastic) Gradient Estimation: Markov Chains

Markov chain {Xn} with a single recurrent state 0, transient states
1, . . . , r, and transition probability matrix P(θ) := [pij(θ)]ri,j=0

τ → first passage time to state 0.

Unbiased single-run sample path LR gradient estimator:

∇̂h(θ) = ĥ(X)∇ lnpX0X1···Xτ (θ) = ĥ(X)
τ−1∑
m=0

∇pXmXm+1(θ)

pXmXm+1(θ)
.

14

Likelihood ratios for gradient estimation

Markov chain. {Xn}

States. 0 recurrent, other states transient

Transition probability matrix. P(θ) := [[pXiXj(θ)]]ri,j=0

Performance measure. F(θ) = E[f(X)]

Simulate (using P(θ)) and obtain X := (X0, . . . , Xτ−1)T

∇θF(θ) = E

[
f(X)

τ−1∑
m=0

∇θpXmXm+1(θ)

pXmXm+1(θ)

]

15

Likelihood ratios for gradient estimation

Markov chain. {Xn}

States. 0 recurrent, other states transient

Transition probability matrix. P(θ) := [[pXiXj(θ)]]ri,j=0

Performance measure. F(θ) = E[f(X)]

Simulate (using P(θ)) and obtain X := (X0, . . . , Xτ−1)T

∇θF(θ) = E

[
f(X)

τ−1∑
m=0

∇θpXmXm+1(θ)

pXmXm+1(θ)

]

15

Policy gradient and Hessian theorem

16

Assumptions

(A1) Bounded costs:

c(s,a)| ≤ K, ∀(s,a) ∈ S ×A ,

(A2) Parameterization regularity:

∥∇ log π(a|s; θ)∥ ≤ G and
∥∥∇2 log π(a|s; θ)

∥∥ ≤ L1, ∀θ

(A3) Lipschitz Hessian:∥∥∇2 log π(a|s; θ1)−∇2 log π(a|s; θ2)
∥∥ ≤ L2 ∥θ1 − θ2∥ , ∀θ1, θ2

17

Policy gradient and Hessian expressions

Total discounted cost:

Ψi(τ) :=
H−1∑
h=i

γh−1c(sh,ah) and Φ(θ; τ) :=
H−1∑
i=0

Ψi(τ) log π(ai|si; θ)

Policy gradient:

∇J(θ) = Eτ∼p(τ ;θ) (∇Φ(θ; τ))

Policy Hessian:

∇2J(θ) = Eτ∼p(τ ;θ)
(
∇Φ(θ; τ)∇⊤ log p(τ ; θ) +∇2Φ(θ; τ)

)

See Shen et al. 2019 for the proof 18

Policy gradient and Hessian: Smoothness results

Under (A1)-(A3), for any θ1, θ2, we have

Lipschitz function: |J(θ1)− J(θ2)| ≤ MH ∥θ1 − θ2∥

Lipschitz gradient: ∥∇J(θ1)−∇J(θ2)∥ ≤ GH ∥θ1 − θ2∥

Lipschitz Hessian:
∥∥∇2J(θ1)−∇2J(θ2)

∥∥ ≤ LH ∥θ1 − θ2∥

Last condition implies: J(θ +∆) ≤ J(θ) +∇J(θ)T∆+
1
2
∆T∇2J(θ)∆ +

1
6
LH ∥∆∥3

See Maniyar et al. 2023 for the proof

19

20

Stationary points: First, second, . . .

21

Stationary points: First and second

Type Condition

FOSP θ ∇J(θ) = 0

ϵ-FOSP θ ∥∇J(θ)∥ ≤ ϵ

SOSP θ ∇J(θ) = 0 and ∇2J(θ) ⪰ 0

SOSP θ ∥∇J(θ)∥ ≤ ϵ and ∇2J(θ) ⪰ −√
ρϵ I

FOSP: First-order stationary point, SOSP: Second-order stationary point; Image src: offconvex.org 22

More on SOSPs

For a non-convex J, finding an FOSP ain’t enough.

e.g. J(θ1, θ2) = θ21 − θ22 ∇J(0, 0) = 0. Is it a local minimum?

J(0, ϵ) < J(0, 0) Compute ∇2J(θ)

∇J(θ) = 0 and ∇2J(θ) ≻ 0⇒ θ is a local minimum

If ∇J(θ) = 0 and ∇2J(θ) = 0, then try a TOSP, and so on.

Bad news: It is NP-hard to find a local minimum

Not so bad if saddle points are strict, as polynomial time algorithms
can find a local minimum.

Strict saddle: ∇J(θ) = 0 and λmin(∇2J(θ)) < 0

23

More on SOSPs

For a non-convex J, finding an FOSP ain’t enough.

e.g. J(θ1, θ2) = θ21 − θ22 ∇J(0, 0) = 0. Is it a local minimum?

J(0, ϵ) < J(0, 0) Compute ∇2J(θ)

∇J(θ) = 0 and ∇2J(θ) ≻ 0⇒ θ is a local minimum

If ∇J(θ) = 0 and ∇2J(θ) = 0, then try a TOSP, and so on.

Bad news: It is NP-hard to find a local minimum

Not so bad if saddle points are strict, as polynomial time algorithms
can find a local minimum.

Strict saddle: ∇J(θ) = 0 and λmin(∇2J(θ)) < 0

23

Approximate SOSP

Definition
Algorithm outputs a random θR. Then, for some ρ > 0, θR is an

ϵ-SOSP if max

{√
E∥∇J(θR)∥,−

1
√
ρ
Eλmin

(
∇2J(θR)

)}
≤

√
ϵ

w.h.p. variant: For any δ ∈ (0, 1), w.p. (1− δ), we have

max

{√
∥∇J(θR)∥,

−1
√
ρ
λmin

(
∇2J(θR)

)}
≤

√
ϵ

24

Summarizing..

• FOSPs aren’t necessarily local optima owing to
non-convexity

• SOSPs : local minima if saddle points are strict;

• Policy gradient RL : Find an ϵ-SOSP using ideas from
stochastic non-convex optmization

25

Summarizing..

• FOSPs aren’t necessarily local optima owing to
non-convexity

• SOSPs : local minima if saddle points are strict;

• Policy gradient RL : Find an ϵ-SOSP using ideas from
stochastic non-convex optmization

25

Summarizing..

• FOSPs aren’t necessarily local optima owing to
non-convexity

• SOSPs : local minima if saddle points are strict;

• Policy gradient RL : Find an ϵ-SOSP using ideas from
stochastic non-convex optmization

25

Getting to SOSPs: Typical Approaches

• Perturbed gradient descent (Ge et al. 2015; Jin et al. 2021):
Add isotropic noise in the update decrement to escape
saddle points θk+1 = θk − η∇J(θk) + ηk, ηk ∼ N (0, σ2I)

• Cubic-regularized Newton (Nesterov and Polyak 2006): Use
second-order information

Policy gradient + perturbed GD: not an easy combination for
getting to SOSPs (Why?)

26

Cubic-regularized policy Newton
(CR-PN)

Main message #1:
Cubic-regularized policy Newton finds an ϵ-SOSP with a

O(1/ϵ3.5) bound on the sample complexity1

Algorithm Sample
ϵ-FOSP ϵ-SOSPcomplexity

REINFORCE O
(
1
ϵ4

)
3 7

(Shen et al. 2019) O
(
1
ϵ3

)
3 7

(Yang, Zheng, and Pan 2021) O
(

1
ϵ4.5

)
3 3

Our work O
(

1
ϵ3.5

)
3 3

1
Mizhaan Prajit Maniyar, Prashanth L.A., Akash Mondal, Shalabh Bhatnagar, A Cubic-regularized Policy Newton

Algorithm for Reinforcement Learning, AISTATS, 2024 (Accepted).

27

Motivation for cubic-regularization

• The standard Newton step is given by:
θk+1 = θk −∇2J(θk)−1∇J(θk)

• This is equivalent to finding a θ that minimizes

⟨∇J(θk), θ − θk⟩+
1
2
〈
∇2J(θk)(θ − θk), θ − θk

〉
• The issues that arise which such an update, is that the Hessian
can be degenerate or non-negative definite.

• Alternative: Add a cubic term to the quadratic approximation:

⟨∇J(θk), θ − θk⟩+
1
2
〈
∇2J(θk)(θ − θk), θ − θk

〉
+
α

6 ∥θ − θk∥3 .

28

Recall: Policy gradient and Hessian expressions

Total discounted cost:

Ψi(τ) :=
H−1∑
h=i

γh−1c(sh,ah) and Φ(θ; τ) :=
H−1∑
i=0

Ψi(τ) log π(ai|si; θ)

Policy gradient: ∇J(θ) = Eτ∼p(τ ;θ) (∇Φ(θ; τ))

Policy Hessian:
∇2J(θ) = Eτ∼p(τ ;θ)

(
∇Φ(θ; τ)∇⊤ log p(τ ; θ) +∇2Φ(θ; τ)

)

29

Cubic-regularized policy Newton

Three-step solution:

Step 1: Obtain multiple trajectories for the MDP using πθk ;

Step 2: Estimate ∇J(θ) and ∇2J(θ) using these trajectories

Step 3: Solve cubic subproblem and then update θk
θk = arg min

θ∈Rd

{̃
Jk(θ) ≡ J̃(θ, θk−1, H̄k, ḡk, αk)

}
, where

J̃(θ, θ̄,H,g, α) =〈
g, θ − θ̄

〉
+
1
2
〈
H(θ − θ̄), θ − θ̄

〉
+
α

6
∥∥θ − θ̄

∥∥3 .

30

Estimating the gradient and Hessian

Estimates from a single trajectory τ under policy θ:
g(θ; τ) := ∇Φ(θ; τ),H(θ; τ) := ∇Φ(θ; τ)∇⊤ log p(τ ; θ) +∇2Φ(θ; τ)

Sample average approximations:

Gradient estimate with mk trajectories:

ḡk =
1
mk

∑
τ∈Tm

H−1∑
h=0

Ψh(τ)∇ log π(ah|sh; θk−1)

Hessian estimate with mk trajectories:

H̄k =
1
bk

∑
τ∈Tb

(H−1∑
h=0

Ψh(τ)∇ log π(ah|sh; θk−1)
H−1∑
h′=0

∇⊤ log π(ah′ |sh′ ; θk−1)
)

+
1
bk

∑
τ∈Tb

H−1∑
h=0

Ψh(τ)∇2 log π(ah|sh; θk−1)

31

ϵ-SOSP convergence

Main result: Let θN be computed by CR-PN Algorithm with the

following parameters:
αk = 3LH,N =

12
√
LH (J∗ − J(θ0))

ϵ
3
2

,

mk =
25G2g
4ϵ2 ,bk =

36 3
√
30(1+ 2 log 2d)d 2

3G2H
ϵ

Let θR be picked uniformly at random from {θ1, . . . , θN}. Then,

5
√
ϵ ≥ max

{√
E∥∇J(θR)∥,−

5
6
√
LH

Eλmin

(
∇2J(θR)

)}

A similar bound holds with high probability.

32

Remarks

• To find an ϵ-SOSP, # trajectories to compute the gradient

and the Hessian are O
(
1
ϵ
7
2

)
and O

(
1
ϵ
5
2

)
• Shen et al. 2019 need O

(
1
ϵ3

)
trajectories, but find an

FOSP

• Yang, Zheng, and Pan 2021 need O
(
1
ϵ
9
2

)
, while Zhang et al.

2020 require O
(
1
ϵ9

)

33

Approximate cubic-regularized
policy Newton (ACRPN)

Approximately solving the cubic problem

• Cubic sub-problem in each iteration of CR-PN is

θk = arg min
θ∈Rd

{̃
Jk(θ) ≡ J̃(θ, θk−1, H̄k, ḡk, αk)

}
• Approximate solution: perform gradient descent for a
reasonable # of steps

• Advantage: GD steps are Hessian-free; need Hessian-vector
products.

• This makes implementation in libraries like PyTorch or
TensorFlow easier

34

Solving the cubic sub-problem

• The cubic auxilliary function can be re-written as:

Fk(∆) := ⟨ḡk,∆⟩+ 1
2
〈
∆, H̄k∆

〉
+
α

6 ∥∆∥3

• and thus, θk = θk−1 + arg min
∆∈Rd

Fk(∆)

Perform GD in an inner-loop:
for t = 1, …, T:

∆t = ∆t−1 − η
(
ḡk + H̄k∆t−1 +

α

2 ∥∆t−1∥∆t−1

)
• where η, T are hyper-parameters to obtain a “good enough”
solution for arg min

∆∈Rd
Fk(∆).

In a stochastic non-convex opt setting, Carmon and Duchi 2019
suggest a clever GD procedure for solving cubic sub-problem;
extended later in Tripuraneni et al. 2018;

35

Solving the cubic sub-problem

• The cubic auxilliary function can be re-written as:

Fk(∆) := ⟨ḡk,∆⟩+ 1
2
〈
∆, H̄k∆

〉
+
α

6 ∥∆∥3

• and thus, θk = θk−1 + arg min
∆∈Rd

Fk(∆)

Perform GD in an inner-loop:
for t = 1, …, T:

∆t = ∆t−1 − η
(
ḡk + H̄k∆t−1 +

α

2 ∥∆t−1∥∆t−1

)
• where η, T are hyper-parameters to obtain a “good enough”
solution for arg min

∆∈Rd
Fk(∆).

In a stochastic non-convex opt setting, Carmon and Duchi 2019
suggest a clever GD procedure for solving cubic sub-problem;
extended later in Tripuraneni et al. 2018;

35

Simulation experiments

36

CR-PN outperforms ACR-PN slightly owing

to its higher precision for subproblem

solver

ACR-PN can be extended to neural

networks as in MuJoCo experiments

37

Two recent results in risk-sensitive RL
1. Risk Estimation in a Markov Cost Process: Lower and Upper
Bounds
Joint work with Gugan Thoppe and Sanjay Bhat

2. Policy Evaluation for Variance in Average Reward
Reinforcement Learning
Joint work with Shubhada Agrawal and Siva Theja Maguluri

38

39

Gugan Thoppe, Prashanth L.A., Sanjay Bhat,
Risk Estimation in a Markov Cost Process,

arxiv preprint 2310.11389

40

Problem Formulation

• Setup: MCP M ≡ (S,P,g, γ) with the infinite-horizon

cumulative discounted cost X∞ =
∞∑
t=0

γtc(st)

• Goal: Lower and upper bounds on the samples needed for
an ϵ-accurate estimate for VaR, CVaR, and variance of X∞

• For a random variable X,

vα(X) = inf{ξ : Pr{X ≤ ξ} ≥ α}

cα(X) = E[X|X ≥ vα(X)]

41

Summary of Key Contributions

Bound type Risk measure Sample complexity

Lower bound Mean, VaR, CVaR, variance Ω

(
1
ϵ2

)
Upper bound CVaR Õ

(
1
ϵ2

)
Upper bound Lipschitz risk measure Õ

(
1
ϵ2

)
Upper bound Variance Õ

(
1
ϵ2

)

Sample complexity is the # of sample transitions N s.t. E|η̂n − η(D)| < ϵ , where

η̂n → estimate, η(D) → risk measure.

42

Key Proof Ideas - Lower Bounds

• Lower bounds apply to (i) deterministic and (ii) stochastic
costs

• For deterministic costs, the hard problem instance
involves a 2-state Markov chain with the cost function
2ϵ exp(1/ϵ2)

• For stochastic costs, we use a single-state MCP with
Gaussian costs. Importantly, the cost mean can be
bounded w.r.t. ϵ.

43

Upper Bounds

• Estimator with truncated trajectories

• Covers variance, CVaR, spectral risk measure, utility-based
shortfall risk

• Proof uses concentration bounds for iid case in
conjunction with a argument that bounds the error due to
truncation

44

Policy Evaluation for Variance in Average Reward
Reinforcement Learning

Shubhada Agrawal, Prashanth L. A. and Siva Theja Maguluri.

45

Variance in Average-cost MDPs

Average cost

Jµ = lim
T→∞

1
TE
[T−1∑
k=0

c(Sk,Ak)|S0 = s
]

Asymptotic variance

κµ = lim
T→∞

1
T Var

[T−1∑
k=0

c(Sk,Ak)
∣∣∣∣(S0,A0) ∼ dµ

]

Equivalent expression:

κµ = Edµ
[
(c(S,A)− Jµ)2

]
+ 2 lim

T→∞

T−1∑
j=1

Edµ
[
(c(S0,A0)− Jµ)

(
c(Sj,Aj)− Jµ

)]

46

Variance in Average-cost MDPs

Average cost

Jµ = lim
T→∞

1
TE
[T−1∑
k=0

c(Sk,Ak)|S0 = s
]

Asymptotic variance

κµ = lim
T→∞

1
T Var

[T−1∑
k=0

c(Sk,Ak)
∣∣∣∣(S0,A0) ∼ dµ

]

Equivalent expression:

κµ = Edµ
[
(c(S,A)− Jµ)2

]
+ 2 lim

T→∞

T−1∑
j=1

Edµ
[
(c(S0,A0)− Jµ)

(
c(Sj,Aj)− Jµ

)]

46

Policy evaluation using TD

Useful expression for designing TD algorithm:
κµ = 2Edµ[(r(S,A)−Jµ)Qµ(S,A)]− Edµ

[
(r(S,A)− Jµ)2

]
,

where Q is the differential Q-value function.

Contributions for solving the policy evaluation problem for
asymptotic variance.

• TD for both tabular and linear function approximation settings

• Finite sample error bounds with Õ(1/k) rate of convergence for
the mean-squared error

47

Policy evaluation using TD

Useful expression for designing TD algorithm:
κµ = 2Edµ[(r(S,A)−Jµ)Qµ(S,A)]− Edµ

[
(r(S,A)− Jµ)2

]
,

where Q is the differential Q-value function.

Contributions for solving the policy evaluation problem for
asymptotic variance.

• TD for both tabular and linear function approximation settings

• Finite sample error bounds with Õ(1/k) rate of convergence for
the mean-squared error

47

References

Agarwal, A. et al. (2020). “Optimality and Approximation with
Policy Gradient Methods in Markov Decision Processes”. In:
Conference on Learning Theory. Vol. 125, pp. 64–66.
Carmon, Yair and John Duchi (2019). “Gradient descent finds
the cubic-regularized nonconvex Newton step”. In: SIAM
Journal on Optimization 29.3, pp. 2146–2178.
Ge, R. et al. (2015). “Escaping From Saddle Points – Online
Stochastic Gradient for Tensor Decomposition”. In:
Conference of Learning Theory.

48

Jin, Chi et al. (2021). “On Nonconvex Optimization for
Machine Learning: Gradients, Stochasticity, and Saddle
Points”. In: J. ACM 68.2. ISSN: 0004-5411.
Kumar, Harshat, Alec Koppel, and Alejandro Ribeiro (2023).
“On the sample complexity of actor-critic method for
reinforcement learning with function approximation”. In:
Machine Learning, pp. 1–35.
Maniyar, M. P. et al. (2023). “A Cubic-regularized Policy
Newton Algorithm for Reinforcement Learning”. In: arXiv
preprint arXiv:2304.10951.
Nesterov, Yurii and Boris Polyak (Aug. 2006). “Cubic
regularization of Newton method and its global
performance”. In: Math. Program. 108, pp. 177–205.
Papini, M. et al. (2018). “Stochastic Variance-Reduced Policy
Gradient”. In: ICML. Vol. 80, pp. 4026–4035.

49

Shen, Z. et al. (2019). “Hessian aided policy gradient”. In:
International Conference on Machine Learning. PMLR,
pp. 5729–5738.
Sutton, R. S. et al. (1999). “Policy gradient methods for
reinforcement learning with function approximation.”. In:
Advances in Neural Information Processing Systems. Vol. 99,
pp. 1057–1063.
Tripuraneni, N. et al. (2018). “Stochastic Cubic Regularization
for Fast Nonconvex Optimization”. In: NeurIPS. Vol. 31. Curran
Associates, Inc.
Vijayan, N. and L. A. Prashanth (2021). “Smoothed
functional-based gradient algorithms for off-policy
reinforcement learning”. In: Systems & Control Letters 155,
p. 104988.

50

Yang, L., Q. Zheng, and G. Pan (2021). “Sample Complexity of
Policy Gradient Finding Second-Order Stationary Points.”. In:
AAAI 12, pp. 10630–10638.
Zhang, K. et al. (2020). “Global Convergence of Policy
Gradient Methods to (Almost) Locally Optimal Policies”. In:
SIAM Journal on Control and Optimization 58.6,
pp. 3586–3612.

51

The Way It Is by William Stafford

There’s a thread you follow. It goes among
things that change. But it doesn’t change.
People wonder about what you are pursuing.
You have to explain about the thread.
But it is hard for others to see.
While you hold it you can’t get lost.
Tragedies happen; people get hurt
or die; and you suffer and get old.
Nothing you do can stop time’s unfolding.
You don’t ever let go of the thread.

Excerpt From “The Poetry Pharmacy”
52

	Introduction
	Likelihood ratio method

	Cubic-regularized policy Newton (CR-PN)
	Approximate cubic-regularized policy Newton (ACRPN)
	References

