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Original Problem Formulation

Stochastic Approximation (SA) was proposed in 1951 by
Robbins & Monro.

Objective: Given a function f : Rd → Rd, find a solution to
f(θ) = 0, when only noisy measurements of f(·) are available.

Iterative method: Start with θ0 and update via

θt+1 = θt + αt[f(θt) + ξt+1],

where αt is the “step size” and ξt+1 is the measurement error.

Question: When does θt converge to a solution?
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Various Types of Updating

Synchronous SA: At each time t, every component of θt
gets updated. Traditional approach.

Asynchronous SA: At each time t, exactly one component of
θt gets updated. Used in Reinforcement Learning (RL).

Block Asynchronous SA: At each time t, some but not
necessarily all components of θt get updated. Used in
large-scale optimization.

We will briefly discuss each of these.
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Solving Fixed Point Problems

Suppose g : Rd → Rd, and we wish to find a fixed point of
g(·), that is, a θ∗ such that g(θ∗) = θ∗.

This is the same as solving f(θ) = 0, with f(θ) = g(θ)− θ.
The updating formula is now

θt+1 = (1− αt)θt + αt[g(θt) + ξt+1],

where, as before, ξt+1 is a measurement error.

Many problems in RL (e.g., Temporal Difference learning,
Q-learning) involve solving a fixed-point problem.
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Nonconvex Optimization

Suppose J : Rd → R is C1. We wish to find a stationary
point θ∗ such that ∇J(θ∗) = 0.

This is similar to above discussion, with f(θ) = −∇J(θt).
(Why the minus sign?)

Suppose ht+1 is the search direction at step t (not
necessarily equal to ∇J(θt)), which is also corrupted by
measurement error.

Several ways to choose the search direction: momentum, or
accelerated methods, ADAM, NADAM, RMSPROP etc.

The updating formula is now

θt+1 = θt − αtht+1.

Several possible error models.

Ideally, not restricted to convex J(·) alone!
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Some Notation

Suppose {Ft} is a filtration, i.e., be an increasing sequence of
σ-algebras. Then Et(X) denotes the conditional expectation
E(X|Ft), and CVt(X) denotes the conditional variance

CVt(X) = Et(∥X − Et(X)∥22).

Definition

A function η : R+ → R+ is said to belong to Class B if η(0) = 0,
and in addition

inf
ϵ≤r≤M

η(r) > 0, ∀0 < ϵ ≤M <∞.
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Example of a Class B Function
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Figure: An illustration of a function in Class B
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A Linear Recursion

Consider the linear stochastic recurrence relation

θt+1 = (1− αt)θt + αtξt+1, t ≥ 0,

where θ0 ∈ Rd, ξt+1 ∈ Rd, and αt ∈ (0, 1), are all random
variables for t ≥ 0.

Despite its simple appearance, this equation is all we need to
analyze all the problems studied here.

Assumption (N): Define Ft to be the σ-algebra generated by
θ0, α

t
0, ξ

t
1. Suppose there exist sequences of constants {µt}, {Mt}

such that, for all t ≥ 0 we have (almost surely)

∥Et(ξt+1)∥2 ≤ µt(1 + ∥θt∥2),

CVt(ξt+1) ≤M2
t (1 + ∥θt∥22).
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General Convergence Theorem
Theorem

(RLK-MV, 2024) Under assumptions (N), if (almost surely)

∞∑
t=0

α2
t <∞,

∞∑
t=0

µtαt <∞,

∞∑
t=0

M2
t α

2
t <∞,

then {θt} is bounded, and ∥θt∥2 converges to an R-valued random
variable. If in addition,

∞∑
t=0

αt = ∞,

then θt → 0.

Assumption (N) is the weakest assumption to date on the error.
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Reprise: Problem Formulation

Objective: Find a stationary point of a C1-function J : Rd → R.

Approach: At each step t, choose a “search direction” ht+1, and
set

θt+1 = θt − αtht+1,

where αt is the step size.

Note: ht+1 need not equal ∇J(θt) plus noise: cf.
momentum-based, accelerated, ADAM, NADAM, RMSPROP, etc.

Question: When does θt converge to a stationary point of J(·),
even when J(·) is not convex?
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Known Bounds for Noise-Free Gradient Descent

Suppose J(·) is convex with a Lipschitz-continuous gradient.
Assume that the unique global minimum of J(·) occurs at θ∗ = 0
and equals zero.

Choose ht+1 = ∇J(θt) (gradient descent without noise).
Then J(θt) = O(t−1).1

Nesterov’s Accelerated Gradient (NAG) method achieves
J(θt) = O(t−2).

No algorithm can achieve a faster rate.

When a first-order approximation for ∇J(θt) is used, then
J(θt) = O(t−1/2).2

1Nesterov, Y.: Introductory Lectures on Convex Optimization: A Basic
Course, vol. 87. Springer Scientific+Business Media (2004)

2Nesterov, Y., Spokoiny, V.: Random Gradient-Free Minimization of Convex
Functions. Foundations of Computational Mathematics 17(2), 527–566 (2017)
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Class of Nonconvex Functions Under Study

(TUKR-MV, 2023 and RLK-MV, 2024)

(J1.) J : Rd → R is C1, and ∇J(·) is Lipschitz-continuous with
constant L.

(J2.) There exists a constant H such that

∥∇J(θ)∥22 ≤ HJ(θ), ∀θ ∈ Rd.

(J3.) There exists a function ψ(·) of Class B such that

∥∇J(θ)∥22 ≥ ψ(J(θ)), ∀θ ∈ Rd.

(J3’.) There exists a constant K such that

∥∇J(θ)∥22 ≥ KJ(θ), ∀θ ∈ Rd.
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Discussions on Conditions

(J2) holds for a convex function with Lipschitz-continuous
gradient.

(J3) is weaker than the Polyak-Lojawiesicz (PL) condition:
There exists a c > 0 such that

∥∇J(θ)∥22 ≥ cJ(θ), ∀θ ∈ Rd.

In (J3), the linear term is replaced by a function of Class B.
A function satisfying (J1), (J2) and (J3) is “invex” – every
local minimum is also a global minimum.

(J3’) is stronger than (J3), and is the PL condition.

A strongly convex function satisfies (J3’).
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An Example of a Nonconvex Function that Satisfies (J3)
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Figure: A nonconvex function that satisfies (J3) but not (J3’)

J(·) satisfies (J3) and is not convex. It also does not satisfy the
PL condition, because as θ → ∞, J(θ) → ∞ but ∇J(θ) → 0.
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An Example of a Nonconvex Function that Satisfies (J3’)
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Figure: Gradient of a Function whose integral satisfies (J3’)

Define ∇J(·) to be the odd extension of the above, and J(·) to be
its integral. Since ∇J(·) is bounded both above and below by a
linear function, J(·) satisfies (J3’).
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Convergence with Noisy Gradient: Set-Up

Suppose the search direction is a noise-corrupted gradient, i.e.,

ht+1 = ∇J(θt) + ξt+1,

where the error satisfies

Assumption (N’): Et(ξt+1) = 0, and for some M , we have

CVt(ξt+1) ≤M2(1 + ∥θt∥22), ∀t ≥ 0.

Assumption (N’) is more restrictive than Assumption (N):

∥Et(ξt+1)∥2 ≤ µt(1 + ∥θt∥2), CVt(ξt+1) ≤M2
t (1 + ∥θt∥22).
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Convergence Theorem

Theorem

1 Suppose (J1) and (J2) hold, and

∞∑
t=0

α2
t <∞.

Then {J(θt} and {∇J(θt)} are bounded.

2 If in addition, (J3) holds and

∞∑
t=0

αt = ∞,

then J(θt) → 0 and ∥∇J(θt)∥2 → 0 as t→ ∞.
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Optimal Rate of Convergence with Noisy Gradient

Theorem

Suppose that J(·) satisfies (J1), (J2), (J3’), and that
ht+1 = ∇J(θt) + ξt+1 with Assumption (N’) on ξt+1. Suppose
the step size sequence satisfies

αt = O(t−(1−ϕ)), αt = Ω(t−(1−C)), C ∈ (0, ϕ]

for some ϕ ∈ (0, 0.5). Then J(θt), ∥∇J(θt)∥22 = o(t−λ) for every
λ < 1− 2ϕ.

In particular, we can make J(θt), ∥∇J(θt)∥22 = o(t−λ) for any
λ < 1 by choosing ϕ < (1− λ)/2.

We can achieve the same rate as Gradient Descent even with noisy
measurements, provided (PL) holds.
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Convergence with Approximate Gradient: Set-Up

Define the search direction ht+1 ∈ Rd as follows:

ht+1,i =
[J(θt + ct∆t+1) + ξ+t+1,i]− [J(θt − ct∆t+1)− ξ−t+1,i]

2ct∆t+1,i
,

where ∆t+1,i, i ∈ [d] are d different and pairwise independent
Rademacher variables. ct is called the“increment.”

Only 2 function evaluations, for every value of d. This is called
SPSA (Simultaneous Perturbation SA) in Spall (1992).

Suppose the error ξt+1 satisfies Assumption (N’) (same as with
noisy gradient):

Et(ξt+1) = 0, CVt(ξt+1) ≤M2(1 + ∥∇J(θt)∥22), ∀t.
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Convergence Theorem

Theorem

1 Suppose Assumptions (J1), (J2) and (J3) hold. Then the
iterations of the Stochastic Gradient Descent algorithm are
bounded almost surely whenever

∞∑
t=0

α2
t <∞,

∞∑
t=0

αtct <∞,

∞∑
t=0

α2
t /c

2
t <∞,

2 If, in addition, we also have

∞∑
t=0

αt = ∞,

then J(θt) → 0 and ∇J(θt) → 0 almost surely as t→ ∞.

M. Vidyasagar FRS Stochastic Approximation in Optimization and RL



Stochastic Approximation: Overview
Nonconvex Optimization

Block Asynchronous SA (BASA)
Some Directions for Future Research

A Linear Recursion
Assumptions on the Objective Function
Convergence Theorems
Numerical Example

Convergence Theorem with Rates

Now two things to be adjusted: αt and ct.

Theorem

Suppose Assumption (J3) is strengthened to Assumption (J3’).
Further, suppose that αt = O(t−(1−ϕ)) and αt = Ω(t−(1−C)),
where C ∈ (0, ϕ], and ct = Θ(t−s). Suppose further that

ϕ < s, ϕ+ s < 0.5,

and define
ν := min{1− 2(ϕ+ s), s− ϕ}.

Then
J(θt), ∥∇J(θt)∥22 = o(t−λ) ∀λ < ν.
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Optimal Choice of Parameters

In αt = O(t−(1−ϕ)), choose ϕ as small as possible and C = ϕ
(large step sizes). Choose ct = O(t−1/3). Then

J(θt), ∥∇J(θt)∥22 = o(t−λ) ∀λ < 1/3.

Compare with known bound of t−1/2.
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Multiple Measurement SPSA

In Bhatnagar and Prashanth (2022), they use k + 1 measurements,
not 2. Then µt = Θ(ckt ), not Θ(ct).

The optimal convergence rate now is o(t−λ) for λ < k/(k + 2),
with the optimal increment being ct = t−s with s ≈ 1/(k+2) (and
ϕ being close to zero).

So we can achieve convergence arbitrarily close to O(t−1) (the best
bound for GD) by increasing k, even with noisy measurements.

Example: If k = 2 (3 function evaluations at each t), we match the
rate of O(t−1/2) of Nesterov-Spokiny (2017).
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Block Updating

Until now, every component of θt is updated at each t
(synchronous updating).

In TUKR & MV, we study the case where some but not
components are updated.

If at time t, only components in some subset S(t) ⊆ [d] are
updated, then in principle, we need to compute [∇J(θt)]i only
for i ∈ S(t).

However, if methods such as back-propagation are used, then
it is just as easy to compute the full vector ∇J(θt).
This approach is numerically less expensive than computing
the full vector ∇J(θt) when approximate gradients are used.
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Methods for Choosing Coordinates to be Updated

1 Full coordinate update.

2 Single coordinate update: Choose i ∈ [d] at random and with
equal probability at each time t, and update only the i-th
component of θt.

3 Multiple coordinate update: Choose N different indices from
[d] with replacement, and update. If there are repetitions,
update that coordinate twice (or more times).

4 Bernoulli update: At time t+ 1, pick a “rate” ρt+1 ∈ (0, 1),
and run d different Bernoulli processes with this rate. Update
the i-th coordinate only if the i-th Bernoulli process equals 1.
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Polyak’s Heavy Ball Algorithm with Block Updating

In TUKR & MV, we study Polyak’s Heavy Ball algorithm. In the
full-coordinate update, we have

θt+1 = θt + αt[−∇J(θt) + ξt+1] + µ(θt − θt−1),

where ξt+1 is the measurement error, and µ is the HB parameter.
(Setting µ = 0 gives Stochastic Gradient Descent.)

Suppose as before that (N) holds, i.e., there exist sequences of
constants {µt}, {Mt} such that

∥Et(ξt+1)∥2 ≤ µt(1 + ∥θt∥2) ∀t,

CVt(ξt+1) ≤M2
t (1 + ∥θt∥22) ∀t.

We can also apply each of the three other block-updating methods.
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Convergence Theorem

Theorem

Suppose J satisfies Assumptions (J1) through (J3). Suppose any
one of Options (1)–(4) is applied in the SHB algorithm.

1 Suppose

∞∑
t=0

α2
t <∞,

∞∑
t=0

αtµt <∞,

∞∑
t=0

α2
tM

2
t <∞,

∞∑
t=0

αt = ∞.

Then {J(θt)} and {θt} are bounded almost surely.

2 If we add Assumption (J3’), then ∇J(θt) → 0 as t→ ∞, and
J(θt) → 0 as t→ ∞.
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Numerical Example

We minimize the objective function

J(θt) = θ
⊤
t Aθt + log

(
d−1∑
i=0

eθt,i

)
,

where θt is a vector of 1 million parameters, and A is a
block-diagonal matrix of size (106 × 106) consisting of 100 Hilbert
matrices, each of dimension 104 × 104. The log-sum is convex, but
the quadratic form is (Very ill-conditioned.)

Batch updating with Bernoulli sampling with various rates ρ was
tried out. Next slides show the computational results.

M. Vidyasagar FRS Stochastic Approximation in Optimization and RL



Stochastic Approximation: Overview
Nonconvex Optimization

Block Asynchronous SA (BASA)
Some Directions for Future Research

A Linear Recursion
Assumptions on the Objective Function
Convergence Theorems
Numerical Example

Results with Noisy Gradients
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Figure: Comparison of various algorithms using noisy gradients with full
and Bernoulli updates
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Results with Approximate Gradients
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Figure: Comparison of various algorithms using approximate gradients
with full and Bernoulli updates
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Some Observations

With “merely” noisy gradients, ADAM, NADAM and
RMSPROP perform the best.

With Bernoulli updating with just 20% sampling, the
performance is comparable to full update.

However, when approximate gradients are used, all of these
methods diverge badly.

In contrast, Stochastic Heavy Ball (SHB) method continues
to work.

for Deep NNs, SHB thus seems to be the best method.
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Fixed Point Problem Formulation

Suppose h : N× (Rd)N → (Rd)N is a nonanticipative family of
maps from (Rd)N → (Rd)N with finite memory. Thus h(t,θ∞0 )
depends only on θtt−∆+1 for each t, for a fixed number ∆.

Moreover, the dependence is a contraction in the ℓ∞-norm.

∥h(t,ψt
t−∆+1)− h(t,ϕt

t−∆+1)∥∞ ≤ γ∥ψt
t−∆+1 − ϕt

t−∆+1∥∞,

for some γ < 1, for all t ≥ ∆, ∀ψ∞
0 ,ϕ

∞
0 ∈ (Rd)N.

Therefore, for every sequence ϕ∞
0 , the iterations h(t,ϕt

0)
converge to a unique fixed point π∗.

Question: How can we find π∗ when only noisy measurements of h
are available?

Application to RL: Q-Learning.
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Block Asynchronous SA (BASA)

Update scheme:

θt+1 = (1d −αt ◦ κt) ◦ θt + (αt ◦ κt) ◦ [ηt + ξt+1],

where ηt = h(t,θt0), 1d is the vector of all ones, αt ∈ (0, 1)d is the
step size vector, κt ∈ {0, 1}d is the update vector, and ◦ denotes
the Hadamard (componentwise) product. As before ξt+1 is the
measurement error.
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Assumptions About the Error

(N1) There exists a finite constant c′1 and a sequence of constants
{µt} such that

∥Et(ξt+1)∥2 ≤ c′1µt(1 + ∥θt0∥∞), ∀t ≥ 0.

(N2) There exists a finite constant c′2 and a sequence of constants
{Mt} such that

CVt(ξt+1) ≤ c′2M
2
t (1 + ∥θt0∥2∞), ∀t ≥ 0.

A little more general assumptions than earlier.
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Choice of Step Size: Global vs. Local Clocks

Distinction first made by Borkar (1998).

For each index i ∈ [d], define the “counter” process {νt,i} and its
inverse as

νt,i =

t∑
s=0

κs,i, ν
−1
i (τ) := min{t ∈ N : νt,i = τ}, ∀τ ≥ 1.

Then ν−1
i (·) is well-defined, and

νi(ν
−1
i (τ)) = τ, ν−1

i (νt,i) ≤ t, ν−1
i (τ) ≤ τ − 1.

Choose a deterministic sequence {βt}. When κt,i = 1, if a global
clock is used, then αt,i = βt. If a local clock is used, then
αt,i = βνt,i .
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Assumptions About the Update Process

Assume that there exist constants ri > 0, i ∈ [d] such that

νt,i
t

→ ri as t→ ∞, ∀i ∈ [d].

Otherwise no assumptions about independence of processes for
different indices, or Markovian nature, etc.
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Convergence Theorem with Local Clocks

Theorem

Suppose a local clock is used. Suppose that {µt} is nonincreasing,
and Mt is uniformly bounded, say by M . Suppose in addition that
βt = O(t−(1−ϕ)), for some ϕ > 0, and βt = Ω(t−(1−C)) for some
C ∈ (0, ϕ]. Suppose that µt = O(t−ϵ) for some ϵ > 0. Then
θτ → π∗ as τ → ∞ for all ϕ < min{0.5, ϵ}. Further,
∥θτ − π∗∥2 = o(τ−λ) for all λ < ϵ− ϕ. In particular, if µt = 0 for
all t, then ∥θτ − π∗∥2 = o(τ−λ) for all λ < 1.
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Convergence Theorem with Global Clocks

Theorem

Suppose a global clock is used. Suppose that βt is nonincreasing.
Suppose in addition that βt = O(t−(1−ϕ)), for some ϕ > 0, and
βt = Ω(t−(1−C)) for some C ∈ (0, ϕ]. Suppose that µt = O(t−ϵ)
for some ϵ > 0, and Mt = O(tδ) for some δ ≥ 0. Then θt → π∗ as
t→ ∞ whenever

ϕ < min{0.5− δ, ϵ}.
Moreover, ∥θt − π∗∥2 = o(t−λ) for all λ < ϵ− ϕ. In particular, if
µt = 0 for all t, then ∥θt − π∗∥2 = o(t−λ) for all λ < 1.
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Traditional Q-Learning

Traditional Q-learning is asynchronous SA: At time t, only
Q(Xt, Ut) is updated.

Convergence theorems for Q-learning require conditions such
as

∞∑
t=0

αtI(Xt,Ut)=(xi,uj) = ∞,

for each state-action pair (xi, uj).

To ensure the above, it is often assumed that every policy
results in an irreducible Markov process.

(Tsitsiklis 2007) Verifying whether every policy results in a
unichain is NP-hard.

So we need another set of conditions that are easy to verify.
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Batch Q-Learning

Choose an arbitrary initial guess Q0 : X × U → R, and m
initial states Xk

0 ∈ X , k ∈ [m].

At time t, for each action index k ∈ [m], with current state
Xk

t = xki , choose the current action as Ut = uk ∈ U , and let
the Markov process run for one time step. Observe the
resulting next state Xk

t+1 = xkj . Then update function Qt as

follows, once for each k ∈ [m]:

Qt+1(x
k
i , uk) =

{
Qt(x

k
i , uk) + αt,i,k[R(xi, uk) + γVt(x

k
j )−Qt(x

k
i , uk)], if xs = xki ,

Qt(x
k
s , uk), if xks ̸= xki .

where
Vt(x

k
j ) = max

wl∈U
Qt(x

k
j , wl).

Repeat.
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Step Size Used

Here αt,i,k equals βt for all i, k if a global clock is used, and equals

αt,i,k =

t∑
τ=0

I{Xk
t =xi}

if a local clock is used.
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Convergence Theorem

Theorem

Suppose that each matrix Auk is irreducible, and that the step size
sequence {βt} satisfies the Robbins-Monro conditions

∞∑
t=0

β2t <∞,

∞∑
t=0

βt = ∞.

With this assumption, we have the following:

1 If a local clock is used, then Qt converges almost surely to Q∗.

2 If a global clock is used, and {βt} is nonincreasing, then Qt

converges almost surely to Q∗.

The assumptions are easy to verify!
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Convergence Analysis of Several Optimization Algorithms

Our theoretical analysis is based on enhancing a well-known
theorem known as the Robbins-Siegmund (“almost
supermartingale”) theorem.

Our enhancements of the R-S theorem can be used to analyze
many popular optimization algorithms currently in use.

In particular, our methods are readily applicable to block
updating as well.

TUKR & MV have analyzed Polyak’s “Heavy Ball” algorithm.

Others have analyzed ADAM, but only with full coordinate
update.

Analyzing various optimization algorithms using the R-S
theorem (with or without block updating) is a promising
avenue of research.
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Application to RL

Question: Can our approach be extended to Markovian SA?

Challenge: Constructing a suitable error model.
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Thank You!
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