Stochastic Approximation in Nonconvex Optimization and Reinforcement Learning

M. Vidyasagar FRS

SERB National Science Chair, IIT Hyderabad

Reinforcement Learning Workshop IISc, 26 February 2024

Summary

- Stochastic Approximation: Overview
- 2 Nonconvex Optimization
 - A Linear Recursion
 - Assumptions on the Objective Function
 - Convergence Theorems
 - Numerical Example
- Block Asynchronous SA (BASA)
 - Convergence Analysis
 - Application to Q-Learning
- 4 Some Directions for Future Research

▲ 同 ▶ ▲ 三 ▶ ▲

Outline

- 1 Stochastic Approximation: Overview
- 2 Nonconvex Optimization
 - A Linear Recursion
 - Assumptions on the Objective Function
 - Convergence Theorems
 - Numerical Example
- Block Asynchronous SA (BASA)
 - Convergence Analysis
 - Application to Q-Learning
- 4 Some Directions for Future Research

• (1) • (1) • (1)

Original Problem Formulation

Stochastic Approximation (SA) was proposed in 1951 by Robbins & Monro.

Objective: Given a function $\mathbf{f} : \mathbb{R}^d \to \mathbb{R}^d$, find a solution to $\mathbf{f}(\boldsymbol{\theta}) = \mathbf{0}$, when only noisy measurements of $\mathbf{f}(\cdot)$ are available.

Iterative method: Start with θ_0 and update via

$$\boldsymbol{\theta}_{t+1} = \boldsymbol{\theta}_t + \alpha_t [\mathbf{f}(\boldsymbol{\theta}_t) + \boldsymbol{\xi}_{t+1}],$$

where α_t is the "step size" and ξ_{t+1} is the measurement error. *Question:* When does θ_t converge to a solution?

Various Types of Updating

- Synchronous SA: At each time t, every component of θ_t gets updated. Traditional approach.
- Asynchronous SA: At each time t, exactly one component of θ_t gets updated. Used in Reinforcement Learning (RL).
- Block Asynchronous SA: At each time t, some but not necessarily all components of θ_t get updated. Used in large-scale optimization.

We will briefly discuss each of these.

イロト イポト イラト イラト

Solving Fixed Point Problems

- Suppose $\mathbf{g} : \mathbb{R}^d \to \mathbb{R}^d$, and we wish to find a fixed point of $\mathbf{g}(\cdot)$, that is, a $\boldsymbol{\theta}^*$ such that $\mathbf{g}(\boldsymbol{\theta}^*) = \boldsymbol{\theta}^*$.
- This is the same as solving $f(\theta) = 0$, with $f(\theta) = g(\theta) \theta$.
- The updating formula is now

$$\boldsymbol{\theta}_{t+1} = (1 - \alpha_t)\boldsymbol{\theta}_t + \alpha_t [\mathbf{g}(\boldsymbol{\theta}_t) + \boldsymbol{\xi}_{t+1}],$$

where, as before, $\boldsymbol{\xi}_{t+1}$ is a measurement error.

Many problems in RL (e.g., Temporal Difference learning, Q-learning) involve solving a fixed-point problem.

イロト イヨト イヨト

Nonconvex Optimization

- Suppose J : ℝ^d → ℝ is C¹. We wish to find a stationary point θ^{*} such that ∇J(θ^{*}) = 0.
- This is similar to above discussion, with $f(\theta) = -\nabla J(\theta_t)$. (Why the minus sign?)
- Suppose \mathbf{h}_{t+1} is the search direction at step t (not necessarily equal to $\nabla J(\boldsymbol{\theta}_t)$), which is also corrupted by measurement error.
- Several ways to choose the search direction: momentum, or accelerated methods, ADAM, NADAM, RMSPROP etc.
- The updating formula is now

$$\boldsymbol{\theta}_{t+1} = \boldsymbol{\theta}_t - \alpha_t \mathbf{h}_{t+1}.$$

- Several possible error models.
- Ideally, not restricted to convex $J(\cdot)$ alone!

A Linear Recursion Assumptions on the Objective Function Convergence Theorems Numerical Example

Outline

- Stochastic Approximation: Overview
- 2 Nonconvex Optimization
 - A Linear Recursion
 - Assumptions on the Objective Function
 - Convergence Theorems
 - Numerical Example
- Block Asynchronous SA (BASA)
 - Convergence Analysis
 - Application to Q-Learning
- 4 Some Directions for Future Research

イロト イポト イヨト イヨ

A Linear Recursion Assumptions on the Objective Function Convergence Theorems Numerical Example

Some Notation

Suppose $\{\mathcal{F}_t\}$ is a filtration, i.e., be an increasing sequence of σ -algebras. Then $E_t(X)$ denotes the conditional expectation $E(X|\mathcal{F}_t)$, and $CV_t(X)$ denotes the conditional variance

$$CV_t(X) = E_t(||X - E_t(X)||_2^2).$$

Definition

A function $\eta: \mathbb{R}_+ \to \mathbb{R}_+$ is said to belong to Class \mathcal{B} if $\eta(0) = 0$, and in addition

$$\inf_{\epsilon \le r \le M} \eta(r) > 0, \ \forall 0 < \epsilon \le M < \infty.$$

イロト イヨト イヨト

A Linear Recursion Assumptions on the Objective Function Convergence Theorems Numerical Example

Example of a Class \mathcal{B} Function

Figure: An illustration of a function in Class ${\cal B}$

イロト イヨト イヨト

Collaborators

A Linear Recursion Assumptions on the Objective Function Convergence Theorems Numerical Example

Prof. R. L. Karandikar Emeritus Prof., CMI

M. Vidyasagar FRS

Stochastic Approximation in Optimization and RL

A Linear Recursion Assumptions on the Objective Function Convergence Theorems Numerical Example

Outline

- Stochastic Approximation: Overview
- 2 Nonconvex Optimization
 - A Linear Recursion
 - Assumptions on the Objective Function
 - Convergence Theorems
 - Numerical Example
- Block Asynchronous SA (BASA)
 - Convergence Analysis
 - Application to Q-Learning
- 4 Some Directions for Future Research

< ロ > < 同 > < 三 > < 三

A Linear Recursion Assumptions on the Objective Function Convergence Theorems Numerical Example

A Linear Recursion

Consider the linear stochastic recurrence relation

$$\boldsymbol{\theta}_{t+1} = (1 - \alpha_t)\boldsymbol{\theta}_t + \alpha_t \boldsymbol{\xi}_{t+1}, t \ge 0,$$

where $\theta_0 \in \mathbb{R}^d$, $\xi_{t+1} \in \mathbb{R}^d$, and $\alpha_t \in (0, 1)$, are all random variables for $t \ge 0$.

Despite its simple appearance, this equation is *all we need* to analyze all the problems studied here.

Assumption (N): Define \mathcal{F}_t to be the σ -algebra generated by $\theta_0, \alpha_0^t, \boldsymbol{\xi}_1^t$. Suppose there exist sequences of constants $\{\mu_t\}, \{M_t\}$ such that, for all $t \geq 0$ we have (almost surely)

$$\begin{split} \|E_t(\boldsymbol{\xi}_{t+1})\|_2 &\leq \mu_t (1 + \|\boldsymbol{\theta}_t\|_2), \\ CV_t(\boldsymbol{\xi}_{t+1}) &\leq M_t^2 (1 + \|\boldsymbol{\theta}_t\|_2^2). \end{split}$$

A Linear Recursion Assumptions on the Objective Function Convergence Theorems Numerical Example

Stochastic Approximation in Optimization and RL

General Convergence Theorem

Theorem

(RLK-MV, 2024) Under assumptions (N), if (almost surely)

$$\sum_{t=0}^{\infty} \alpha_t^2 < \infty, \sum_{t=0}^{\infty} \mu_t \alpha_t < \infty, \sum_{t=0}^{\infty} M_t^2 \alpha_t^2 < \infty$$

then $\{\theta_t\}$ is bounded, and $\|\theta_t\|_2$ converges to an \mathbb{R} -valued random variable. If in addition,

$$\sum_{t=0}^{\infty} \alpha_t = \infty,$$

then $\theta_t \rightarrow 0$.

Assumption (N) is the *weakest assumption to date* on the error.

A Linear Recursion Assumptions on the Objective Function Convergence Theorems Numerical Example

Outline

- Stochastic Approximation: Overview
- 2 Nonconvex Optimization
 - A Linear Recursion
 - Assumptions on the Objective Function
 - Convergence Theorems
 - Numerical Example
- Block Asynchronous SA (BASA)
 - Convergence Analysis
 - Application to Q-Learning
- 4 Some Directions for Future Research

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

A Linear Recursion Assumptions on the Objective Function Convergence Theorems Numerical Example

Reprise: Problem Formulation

Objective: Find a stationary point of a C^1 -function $J : \mathbb{R}^d \to \mathbb{R}$. *Approach:* At each step t, choose a "search direction" \mathbf{h}_{t+1} , and set

$$\boldsymbol{\theta}_{t+1} = \boldsymbol{\theta}_t - \alpha_t \mathbf{h}_{t+1},$$

where α_t is the step size.

Note: \mathbf{h}_{t+1} need not equal $\nabla J(\boldsymbol{\theta}_t)$ plus noise: cf. momentum-based, accelerated, ADAM, NADAM, RMSPROP, etc.

Question: When does θ_t converge to a stationary point of $J(\cdot)$, even when $J(\cdot)$ is not convex?

A Linear Recursion Assumptions on the Objective Function Convergence Theorems Numerical Example

Known Bounds for Noise-Free Gradient Descent

Suppose $J(\cdot)$ is *convex* with a Lipschitz-continuous gradient. Assume that the unique global minimum of $J(\cdot)$ occurs at $\theta^* = 0$ and equals zero.

- Choose $\mathbf{h}_{t+1} = \nabla J(\boldsymbol{\theta}_t)$ (gradient descent without noise). Then $J(\boldsymbol{\theta}_t) = O(t^{-1}).^1$
- Nesterov's Accelerated Gradient (NAG) method achieves $J(\boldsymbol{\theta}_t) = O(t^{-2}).$
- No algorithm can achieve a faster rate.
- When a first-order approximation for $\nabla J(\theta_t)$ is used, then $J(\theta_t) = O(t^{-1/2}).^2$

¹Nesterov, Y.: Introductory Lectures on Convex Optimization: A Basic Course, vol. 87. Springer Scientific+Business Media (2004)

²Nesterov, Y., Spokoiny, V.: Random Gradient-Free Minimization of Convex Functions. Foundations of Computational Mathematics 17(2), 527-566 (2017)

A Linear Recursion Assumptions on the Objective Function Convergence Theorems Numerical Example

Class of Nonconvex Functions Under Study

(TUKR-MV, 2023 and RLK-MV, 2024)

- (J1.) $J: \mathbb{R}^d \to \mathbb{R}$ is \mathcal{C}^1 , and $\nabla J(\cdot)$ is Lipschitz-continuous with constant L.
- (J2.) There exists a constant H such that

 $\|\nabla J(\boldsymbol{\theta})\|_2^2 \leq HJ(\boldsymbol{\theta}), \; \forall \boldsymbol{\theta} \in \mathbb{R}^d.$

(J3.) There exists a function $\psi(\cdot)$ of Class ${\mathcal B}$ such that

$$\|\nabla J(\boldsymbol{\theta})\|_2^2 \geq \psi(J(\boldsymbol{\theta})), \; \forall \boldsymbol{\theta} \in \mathbb{R}^d.$$

(J3'.) There exists a constant K such that

$$\|\nabla J(\boldsymbol{\theta})\|_2^2 \ge K J(\boldsymbol{\theta}), \ \forall \boldsymbol{\theta} \in \mathbb{R}^d$$

A Linear Recursion Assumptions on the Objective Function Convergence Theorems Numerical Example

Discussions on Conditions

- (J2) holds for a convex function with Lipschitz-continuous gradient.
- (J3) is weaker than the Polyak-Lojawiesicz (PL) condition: There exists a c > 0 such that

$$\|\nabla J(\boldsymbol{\theta})\|_2^2 \ge cJ(\boldsymbol{\theta}), \ \forall \boldsymbol{\theta} \in \mathbb{R}^d.$$

In (J3), the linear term is replaced by a function of Class \mathcal{B} .

- A function satisfying (J1), (J2) and (J3) is "invex" every local minimum is also a global minimum.
- \bullet (J3') is stronger than (J3), and is the PL condition.
- A *strongly* convex function satisfies (J3').

イロト イヨト イヨト

A Linear Recursion Assumptions on the Objective Function Convergence Theorems Numerical Example

An Example of a Nonconvex Function that Satisfies (J3)

Figure: A nonconvex function that satisfies (J3) but not (J3')

 $J(\cdot)$ satisfies (J3) and is not convex. It also *does not satisfy* the PL condition, because as $\theta \to \infty$, $J(\theta) \to \infty$ but $\nabla J(\theta) \to 0$.

A Linear Recursion Assumptions on the Objective Function Convergence Theorems Numerical Example

An Example of a Nonconvex Function that Satisfies (J3')

Figure: Gradient of a Function whose integral satisfies (J3')

Define $\nabla J(\cdot)$ to be the odd extension of the above, and $J(\cdot)$ to be its integral. Since $\nabla J(\cdot)$ is bounded both above and below by a linear function, $J(\cdot)$ satisfies (J3').

IT Hyderab

A Linear Recursion Assumptions on the Objective Function Convergence Theorems Numerical Example

Outline

- Stochastic Approximation: Overview
- 2 Nonconvex Optimization
 - A Linear Recursion
 - Assumptions on the Objective Function
 - Convergence Theorems
 - Numerical Example
- Block Asynchronous SA (BASA)
 - Convergence Analysis
 - Application to Q-Learning
- 4 Some Directions for Future Research

< ロ > < 同 > < 三 > < 三

A Linear Recursion Assumptions on the Objective Function **Convergence Theorems** Numerical Example

Convergence with Noisy Gradient: Set-Up

Suppose the search direction is a noise-corrupted gradient, i.e.,

$$\mathbf{h}_{t+1} = \nabla J(\boldsymbol{\theta}_t) + \boldsymbol{\xi}_{t+1},$$

where the error satisfies

Assumption (N'): $E_t(\boldsymbol{\xi}_{t+1}) = \mathbf{0}$, and for some M, we have

$$CV_t(\boldsymbol{\xi}_{t+1}) \le M^2(1 + \|\boldsymbol{\theta}_t\|_2^2), \ \forall t \ge 0.$$

Assumption (N') is more restrictive than Assumption (N):

$$||E_t(\boldsymbol{\xi}_{t+1})||_2 \le \mu_t(1+||\boldsymbol{\theta}_t||_2), CV_t(\boldsymbol{\xi}_{t+1}) \le M_t^2(1+||\boldsymbol{\theta}_t||_2^2).$$

A Linear Recursion Assumptions on the Objective Function Convergence Theorems Numerical Example

Convergence Theorem

Theorem

1	Suppose	(J1)	and	(J2)	hold,	and
---	---------	------	-----	------	-------	-----

$$\sum_{t=0}^{\infty} \alpha_t^2 < \infty.$$

Then $\{J(\theta_t)\}$ and $\{\nabla J(\theta_t)\}$ are bounded. 3 If in addition, (J3) holds and

$$\sum_{t=0}^{\infty} \alpha_t = \infty,$$

then $J(\boldsymbol{\theta}_t) \to 0$ and $\|\nabla J(\boldsymbol{\theta}_t)\|_2 \to 0$ as $t \to \infty$.

イロト イボト イヨト イヨト

A Linear Recursion Assumptions on the Objective Function **Convergence Theorems** Numerical Example

Optimal Rate of Convergence with Noisy Gradient

Theorem

Suppose that $J(\cdot)$ satisfies (J1), (J2), (J3'), and that $\mathbf{h}_{t+1} = \nabla J(\boldsymbol{\theta}_t) + \boldsymbol{\xi}_{t+1}$ with Assumption (N') on $\boldsymbol{\xi}_{t+1}$. Suppose the step size sequence satisfies

$$\alpha_t = O(t^{-(1-\phi)}), \alpha_t = \Omega(t^{-(1-C)}), C \in (0, \phi]$$

for some $\phi \in (0, 0.5)$. Then $J(\theta_t), \|\nabla J(\theta_t)\|_2^2 = o(t^{-\lambda})$ for every $\lambda < 1 - 2\phi$.

In particular, we can make $J(\theta_t), \|\nabla J(\theta_t)\|_2^2 = o(t^{-\lambda})$ for any $\lambda < 1$ by choosing $\phi < (1 - \lambda)/2$.

We can achieve the same rate as Gradient Descent even *with* noisy measurements, provided (PL) holds.

A Linear Recursion Assumptions on the Objective Function Convergence Theorems Numerical Example

Convergence with Approximate Gradient: Set-Up

Define the search direction $\mathbf{h}_{t+1} \in \mathbb{R}^d$ as follows:

$$h_{t+1,i} = \frac{[J(\boldsymbol{\theta}_t + c_t \boldsymbol{\Delta}_{t+1}) + \xi_{t+1,i}^+] - [J(\boldsymbol{\theta}_t - c_t \boldsymbol{\Delta}_{t+1}) - \xi_{t+1,i}^-]}{2c_t \Delta_{t+1,i}},$$

where $\Delta_{t+1,i}, i \in [d]$ are d different and pairwise independent **Rademacher variables**. c_t is called the "increment."

Only 2 function evaluations, for every value of d. This is called SPSA (Simultaneous Perturbation SA) in Spall (1992).

Suppose the error $\boldsymbol{\xi}_{t+1}$ satisfies Assumption (N') (same as with noisy gradient):

$$E_t(\boldsymbol{\xi}_{t+1}) = \mathbf{0}, CV_t(\boldsymbol{\xi}_{t+1}) \le M^2(1 + \|\nabla J(\boldsymbol{\theta}_t)\|_2^2), \ \forall t.$$

< ロ > < 同 > < 三 > < 三 >

A Linear Recursion Assumptions on the Objective Function Convergence Theorems Numerical Example

Convergence Theorem

Theorem

 Suppose Assumptions (J1), (J2) and (J3) hold. Then the iterations of the Stochastic Gradient Descent algorithm are bounded almost surely whenever

$$\sum_{t=0}^{\infty} \alpha_t^2 < \infty, \sum_{t=0}^{\infty} \alpha_t c_t < \infty, \sum_{t=0}^{\infty} \alpha_t^2 / c_t^2 < \infty,$$

If, in addition, we also have

$$\sum_{t=0}^{\infty} \alpha_t = \infty,$$

then $J(\boldsymbol{\theta}_t) \to 0$ and $\nabla J(\boldsymbol{\theta}_t) \to \mathbf{0}$ almost surely as $t \to \infty$.

イロト イボト イヨト イヨト

A Linear Recursion Assumptions on the Objective Function **Convergence Theorems** Numerical Example

Convergence Theorem with Rates

Now *two* things to be adjusted: α_t and c_t .

Theorem

Suppose Assumption (J3) is strengthened to Assumption (J3'). Further, suppose that $\alpha_t = O(t^{-(1-\phi)})$ and $\alpha_t = \Omega(t^{-(1-C)})$, where $C \in (0, \phi]$, and $c_t = \Theta(t^{-s})$. Suppose further that

 $\phi < s, \phi + s < 0.5,$

and define

$$\nu := \min\{1 - 2(\phi + s), s - \phi\}.$$

Then

$$J(\boldsymbol{\theta}_t), \|\nabla J(\boldsymbol{\theta}_t)\|_2^2 = o(t^{-\lambda}) \; \forall \lambda < \nu.$$

A Linear Recursion Assumptions on the Objective Function Convergence Theorems Numerical Example

Optimal Choice of Parameters

In $\alpha_t = O(t^{-(1-\phi)})$, choose ϕ as small as possible and $C = \phi$ (large step sizes). Choose $c_t = O(t^{-1/3})$. Then

$$J(\boldsymbol{\theta}_t), \|\nabla J(\boldsymbol{\theta}_t)\|_2^2 = o(t^{-\lambda}) \; \forall \lambda < 1/3.$$

Compare with known bound of $t^{-1/2}$.

A Linear Recursion Assumptions on the Objective Function Convergence Theorems Numerical Example

Multiple Measurement SPSA

In Bhatnagar and Prashanth (2022), they use k + 1 measurements, not 2. Then $\mu_t = \Theta(c_t^k)$, not $\Theta(c_t)$.

The optimal convergence rate now is $o(t^{-\lambda})$ for $\lambda < k/(k+2)$, with the optimal increment being $c_t = t^{-s}$ with $s \approx 1/(k+2)$ (and ϕ being close to zero).

So we can achieve convergence arbitrarily close to $O(t^{-1})$ (the best bound for GD) by increasing k, even with noisy measurements.

Example: If k = 2 (3 function evaluations at each t), we match the rate of $O(t^{-1/2})$ of Nesterov-Spokiny (2017).

イロト イボト イヨト イヨト

A Linear Recursion Assumptions on the Objective Function Convergence Theorems Numerical Example

Block Updating

- Until now, *every* component of θ_t is updated at each t (synchronous updating).
- In TUKR & MV, we study the case where *some but not* components are updated.
- If at time t, only components in some subset $S(t) \subseteq [d]$ are updated, then in principle, we need to compute $[\nabla J(\boldsymbol{\theta}_t)]_i$ only for $i \in S(t)$.
- However, if methods such as back-propagation are used, then it is just as easy to compute the full vector ∇J(θ_t).
- This approach is numerically less expensive than computing the full vector ∇J(θ_t) when approximate gradients are used.

イロト イヨト イヨト

A Linear Recursion Assumptions on the Objective Function **Convergence Theorems** Numerical Example

Methods for Choosing Coordinates to be Updated

- Full coordinate update.
- ② Single coordinate update: Choose $i \in [d]$ at random and with equal probability at each time t, and update only the *i*-th component of θ_t .
- Multiple coordinate update: Choose N different indices from
 [d] with replacement, and update. If there are repetitions, update that coordinate twice (or more times).
- Sernoulli update: At time t + 1, pick a "rate" ρ_{t+1} ∈ (0,1), and run d different Bernoulli processes with this rate. Update the *i*-th coordinate only if the *i*-th Bernoulli process equals 1.

イロト イヨト イヨト

A Linear Recursion Assumptions on the Objective Function Convergence Theorems Numerical Example

Polyak's Heavy Ball Algorithm with Block Updating

In TUKR & MV, we study Polyak's Heavy Ball algorithm. In the full-coordinate update, we have

$$\boldsymbol{\theta}_{t+1} = \boldsymbol{\theta}_t + \alpha_t [-\nabla J(\boldsymbol{\theta}_t) + \boldsymbol{\xi}_{t+1}] + \mu(\boldsymbol{\theta}_t - \boldsymbol{\theta}_{t-1}),$$

where ξ_{t+1} is the measurement error, and μ is the HB parameter. (Setting $\mu = 0$ gives Stochastic Gradient Descent.)

Suppose as before that (N) holds, i.e., there exist sequences of constants $\{\mu_t\}$, $\{M_t\}$ such that

$$||E_t(\boldsymbol{\xi}_{t+1})||_2 \le \mu_t (1 + ||\boldsymbol{\theta}_t||_2) \ \forall t,$$

$$CV_t(\boldsymbol{\xi}_{t+1}) \le M_t^2 (1 + \|\boldsymbol{\theta}_t\|_2^2) \ \forall t.$$

We can also apply each of the three other block-updating methods.

< ロ > < 同 > < 回 > < 回 >

A Linear Recursion Assumptions on the Objective Function Convergence Theorems Numerical Example

Convergence Theorem

Theorem

Suppose J satisfies Assumptions (J1) through (J3). Suppose any one of Options (1)-(4) is applied in the SHB algorithm.

Suppose

$$\begin{split} \sum_{t=0}^{\infty} \alpha_t^2 < \infty, \sum_{t=0}^{\infty} \alpha_t \mu_t < \infty, \sum_{t=0}^{\infty} \alpha_t^2 M_t^2 < \infty, \\ \sum_{t=0}^{\infty} \alpha_t = \infty. \end{split}$$

Then $\{J(\boldsymbol{\theta}_t)\}$ and $\{\boldsymbol{\theta}_t\}$ are bounded almost surely.

2 If we add Assumption (J3'), then $\nabla J(\boldsymbol{\theta}_t) \to \mathbf{0}$ as $t \to \infty$, and $J(\boldsymbol{\theta}_t) \to 0$ as $t \to \infty$.

IIT Hyderab

A Linear Recursion Assumptions on the Objective Function Convergence Theorems Numerical Example

Outline

- Stochastic Approximation: Overview
- 2 Nonconvex Optimization
 - A Linear Recursion
 - Assumptions on the Objective Function
 - Convergence Theorems
 - Numerical Example
- Block Asynchronous SA (BASA)
 - Convergence Analysis
 - Application to Q-Learning
- 4 Some Directions for Future Research

< ロ > < 同 > < 三 > < 三

A Linear Recursion Assumptions on the Objective Function Convergence Theorems Numerical Example

Numerical Example

We minimize the objective function

$$J(\boldsymbol{\theta}_t) = \boldsymbol{\theta}_t^{\top} A \boldsymbol{\theta}_t + \log \left(\sum_{i=0}^{d-1} e^{\theta_{t,i}} \right),$$

where θ_t is a vector of 1 million parameters, and A is a block-diagonal matrix of size $(10^6 \times 10^6)$ consisting of 100 Hilbert matrices, each of dimension $10^4 \times 10^4$. The log-sum is convex, but the quadratic form is (*Very ill-conditioned.*)

Batch updating with Bernoulli sampling with various rates ρ was tried out. Next slides show the computational results.

< ロ > < 同 > < 三 > < 三

A Linear Recursion Assumptions on the Objective Function Convergence Theorems Numerical Example

Results with Noisy Gradients

Figure: Comparison of various algorithms using noisy gradients with full and Bernoulli updates

< □ > < 同 > < 回 >

A Linear Recursion Assumptions on the Objective Function Convergence Theorems Numerical Example

Results with Approximate Gradients

Figure: Comparison of various algorithms using approximate gradients with full and Bernoulli updates

A Linear Recursion Assumptions on the Objective Function Convergence Theorems Numerical Example

Some Observations

- With "merely" noisy gradients, ADAM, NADAM and RMSPROP perform the best.
- With Bernoulli updating with just 20% sampling, the performance is comparable to full update.
- However, when *approximate gradients* are used, *all* of these methods diverge badly.
- In contrast, Stochastic Heavy Ball (SHB) method continues to work.
- for Deep NNs, SHB thus seems to be the best method.

Convergence Analysis Application to Q-Learning

Outline

- Stochastic Approximation: Overview
- 2 Nonconvex Optimization
 - A Linear Recursion
 - Assumptions on the Objective Function
 - Convergence Theorems
 - Numerical Example
- 3 Block Asynchronous SA (BASA)
 - Convergence Analysis
 - Application to Q-Learning
- 4 Some Directions for Future Research

- 4 同 6 4 日 6 4 日

Convergence Analysis Application to *Q*-Learning

Outline

- Stochastic Approximation: Overview
- 2 Nonconvex Optimization
 - A Linear Recursion
 - Assumptions on the Objective Function
 - Convergence Theorems
 - Numerical Example
- 3 Block Asynchronous SA (BASA)
 - Convergence Analysis
 - Application to Q-Learning
 - 4 Some Directions for Future Research

- 4 目 ト - 日 ト - 4

Convergence Analysis Application to Q-Learning

Fixed Point Problem Formulation

- Suppose h: N×(R^d)^N→ (R^d)^N is a *nonanticipative* family of maps from (R^d)^N→ (R^d)^N with finite memory. Thus h(t, θ₀[∞]) depends only on θ^t_{t-Δ+1} for each t, for a fixed number Δ.
- Moreover, the dependence is a contraction in the ℓ_{∞} -norm.

$$\|\mathbf{h}(t, \boldsymbol{\psi}_{t-\Delta+1}^t) - \mathbf{h}(t, \boldsymbol{\phi}_{t-\Delta+1}^t)\|_{\infty} \leq \gamma \|\boldsymbol{\psi}_{t-\Delta+1}^t - \boldsymbol{\phi}_{t-\Delta+1}^t\|_{\infty},$$

for some $\gamma < 1$, for all $t \ge \Delta$, $\forall \psi_0^{\infty}, \phi_0^{\infty} \in (\mathbb{R}^d)^{\mathbb{N}}$.

• Therefore, for every sequence ϕ_0^{∞} , the iterations $\mathbf{h}(t, \phi_0^t)$ converge to a unique fixed point π^* .

Question: How can we find π^* when only noisy measurements of **h** are available?

Application to RL: Q-Learning.

Convergence Analysis Application to *Q*-Learning

Block Asynchronous SA (BASA)

Update scheme:

$$\boldsymbol{\theta}_{t+1} = (\mathbf{1}_d - \boldsymbol{\alpha}_t \circ \boldsymbol{\kappa}_t) \circ \boldsymbol{\theta}_t + (\boldsymbol{\alpha}_t \circ \boldsymbol{\kappa}_t) \circ [\boldsymbol{\eta}_t + \boldsymbol{\xi}_{t+1}],$$

where $\eta_t = \mathbf{h}(t, \theta_0^t)$, $\mathbf{1}_d$ is the vector of all ones, $\alpha_t \in (0, 1)^d$ is the step size vector, $\kappa_t \in \{0, 1\}^d$ is the update vector, and \circ denotes the Hadamard (componentwise) product. As before $\boldsymbol{\xi}_{t+1}$ is the measurement error.

< ロ > < 同 > < 三 > < 三 >

Convergence Analysis Application to Q-Learning

Assumptions About the Error

(N1) There exists a finite constant c_1' and a sequence of constants $\{\mu_t\}$ such that

$$||E_t(\boldsymbol{\xi}_{t+1})||_2 \le c_1' \mu_t (1 + ||\boldsymbol{\theta}_0^t||_\infty), \ \forall t \ge 0.$$

(N2) There exists a finite constant c_2' and a sequence of constants $\{M_t\}$ such that

$$CV_t(\boldsymbol{\xi}_{t+1}) \le c'_2 M_t^2 (1 + \|\boldsymbol{\theta}_0^t\|_{\infty}^2), \ \forall t \ge 0.$$

A little more general assumptions than earlier.

< ロ > < 同 > < 三 > < 三 >

Convergence Analysis Application to Q-Learning

Choice of Step Size: Global vs. Local Clocks

Distinction first made by Borkar (1998).

For each index $i \in [d],$ define the "counter" process $\{\nu_{t,i}\}$ and its inverse as

$$\nu_{t,i} = \sum_{s=0}^{t} \kappa_{s,i}, \nu_i^{-1}(\tau) := \min\{t \in \mathbb{N} : \nu_{t,i} = \tau\}, \ \forall \tau \ge 1.$$

Then $u_i^{-1}(\cdot)$ is well-defined, and

$$\nu_i(\nu_i^{-1}(\tau)) = \tau, \nu_i^{-1}(\nu_{t,i}) \le t, \nu_i^{-1}(\tau) \le \tau - 1.$$

Choose a *deterministic* sequence $\{\beta_t\}$. When $\kappa_{t,i} = 1$, if a global clock is used, then $\alpha_{t,i} = \beta_t$. If a local clock is used, then $\alpha_{t,i} = \beta_{\nu_{t,i}}$.

Convergence Analysis Application to Q-Learning

Assumptions About the Update Process

Assume that there exist constants $r_i > 0, i \in [d]$ such that

$$\frac{\nu_{t,i}}{t} \to r_i \text{ as } t \to \infty, \; \forall i \in [d].$$

Otherwise no assumptions about independence of processes for different indices, or Markovian nature, etc.

Convergence Analysis Application to Q-Learning

Convergence Theorem with Local Clocks

Theorem

Suppose a local clock is used. Suppose that $\{\mu_t\}$ is nonincreasing, and M_t is uniformly bounded, say by M. Suppose in addition that $\beta_t = O(t^{-(1-\phi)})$, for some $\phi > 0$, and $\beta_t = \Omega(t^{-(1-C)})$ for some $C \in (0, \phi]$. Suppose that $\mu_t = O(t^{-\epsilon})$ for some $\epsilon > 0$. Then $\theta_\tau \to \pi^*$ as $\tau \to \infty$ for all $\phi < \min\{0.5, \epsilon\}$. Further, $\|\theta_\tau - \pi^*\|_2 = o(\tau^{-\lambda})$ for all $\lambda < \epsilon - \phi$. In particular, if $\mu_t = 0$ for all t, then $\|\theta_\tau - \pi^*\|_2 = o(\tau^{-\lambda})$ for all $\lambda < 1$.

Convergence Analysis Application to Q-Learning

Convergence Theorem with Global Clocks

Theorem

Suppose a global clock is used. Suppose that β_t is nonincreasing. Suppose in addition that $\beta_t = O(t^{-(1-\phi)})$, for some $\phi > 0$, and $\beta_t = \Omega(t^{-(1-C)})$ for some $C \in (0, \phi]$. Suppose that $\mu_t = O(t^{-\epsilon})$ for some $\epsilon > 0$, and $M_t = O(t^{\delta})$ for some $\delta \ge 0$. Then $\theta_t \to \pi^*$ as $t \to \infty$ whenever

 $\phi < \min\{0.5 - \delta, \epsilon\}.$

Moreover, $\|\boldsymbol{\theta}_t - \boldsymbol{\pi}^*\|_2 = o(t^{-\lambda})$ for all $\lambda < \epsilon - \phi$. In particular, if $\mu_t = 0$ for all t, then $\|\boldsymbol{\theta}_t - \boldsymbol{\pi}^*\|_2 = o(t^{-\lambda})$ for all $\lambda < 1$.

イロト イヨト イヨト

Convergence Analysis Application to Q-Learning

Outline

- 1 Stochastic Approximation: Overview
- 2 Nonconvex Optimization
 - A Linear Recursion
 - Assumptions on the Objective Function
 - Convergence Theorems
 - Numerical Example
- 3 Block Asynchronous SA (BASA)
 - Convergence Analysis
 - Application to Q-Learning
 - 4 Some Directions for Future Research

▲ 同 ▶ ▲ 三 ▶ ▲

Convergence Analysis Application to *Q*-Learning

Traditional Q-Learning

- Traditional *Q*-learning is *asynchronous SA*: At time *t*, only $Q(X_t, U_t)$ is updated.
- Convergence theorems for Q-learning require conditions such as $$\sim$$

$$\sum_{t=0}^{\infty} \alpha_t I_{(X_t, U_t) = (x_i, u_j)} = \infty,$$

for each state-action pair (x_i, u_j) .

- To ensure the above, it is often assumed that *every policy* results in an irreducible Markov process.
- (Tsitsiklis 2007) Verifying whether *every policy* results in a unichain is NP-hard.
- So we need another set of conditions that are easy to verify.

Convergence Analysis Application to *Q*-Learning

Batch Q-Learning

- Choose an arbitrary initial guess Q₀ : X × U → ℝ, and m initial states X^k₀ ∈ X, k ∈ [m].
- At time t, for each action index $k \in [m]$, with current state $X_t^k = x_i^k$, choose the current action as $U_t = u_k \in \mathcal{U}$, and let the Markov process run for one time step. Observe the resulting next state $X_{t+1}^k = x_j^k$. Then update function Q_t as follows, once for each $k \in [m]$:

$$Q_{t+1}(x_i^k, u_k) = \begin{cases} Q_t(x_i^k, u_k) + \alpha_{t,i,k} [R(x_i, u_k) + \gamma V_t(x_j^k) - Q_t(x_i^k, u_k)], \\ Q_t(x_s^k, u_k), \end{cases}$$

where

$$V_t(x_j^k) = \max_{w_l \in \mathcal{U}} Q_t(x_j^k, w_l).$$

Repeat.

< ロ > < 同 > < 三 > < 三 >

Convergence Analysis Application to *Q*-Learning

Step Size Used

Here $\alpha_{t,i,k}$ equals β_t for all i, k if a global clock is used, and equals

$$\alpha_{t,i,k} = \sum_{\tau=0}^{t} I_{\{X_t^k = x_i\}}$$

if a local clock is used.

Convergence Analysis Application to Q-Learning

Convergence Theorem

Theorem

Suppose that each matrix A^{u_k} is irreducible, and that the step size sequence $\{\beta_t\}$ satisfies the Robbins-Monro conditions

$$\sum_{t=0}^\infty \beta_t^2 < \infty, \sum_{t=0}^\infty \beta_t = \infty.$$

With this assumption, we have the following:

- **1** If a local clock is used, then Q_t converges almost surely to Q^* .
- **2** If a global clock is used, and $\{\beta_t\}$ is nonincreasing, then Q_t converges almost surely to Q^* .

The assumptions are easy to verify!

Outline

- 1 Stochastic Approximation: Overview
- 2 Nonconvex Optimization
 - A Linear Recursion
 - Assumptions on the Objective Function
 - Convergence Theorems
 - Numerical Example
- Block Asynchronous SA (BASA)
 - Convergence Analysis
 - Application to Q-Learning
- 4 Some Directions for Future Research

・ 一 マ ト ・ 日 ト ・

Convergence Analysis of Several Optimization Algorithms

- Our theoretical analysis is based on enhancing a well-known theorem known as the Robbins-Siegmund ("almost supermartingale") theorem.
- Our enhancements of the R-S theorem can be used to analyze many popular optimization algorithms currently in use.
- In particular, our methods are readily applicable to block updating as well.
- TUKR & MV have analyzed Polyak's "Heavy Ball" algorithm.
- Others have analyzed ADAM, but only with full coordinate update.
- Analyzing various optimization algorithms using the R-S theorem (with or without block updating) is a promising avenue of research.

Application to RL

Question: Can our approach be extended to Markovian SA? *Challenge:* Constructing a suitable error model.

References

- M. Vidyasagar, "Convergence of stochastic approximation via martingale and converse Lya punov methods, *Mathematics of Controls Signals and Systems*, 35, 351–374 (2023).
- T. U. K. Reddy and M. Vidyasagar, "Convergence of momentum-based heavy ball method with batch updating and/or approximate gradients," https://arxiv.org/pdf/2303.16241.pdf (2023)
- Rajeeva L. Karandikar and M. Vidyasagar, Convergence rates for stochastic approximation: Biased noise with unbounded variance, and applications.

https://arxiv.org/pdf/2312.02828v2, 2024.

 Rajeeva L. Karandikar and M. Vidyasagar, Recent Advances in Stochastic Approximation with Applications to Optimization and Reinforcement Learning, https://arxiv.org/pdf/2109.03445v5, 2024.

Thank You!

æ

イロト イヨト イヨト イヨト