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Importance of data privacy

• Protection of personal information, financial records, and
health information, etc.
• Threat to organizations such as financial losses, and reputa-
tional damage, etc.

Challenges in data privacy

• More sophisticated cyberattacks
• Widespread collection and storage of personal information
• Lack of security measures, encryption protocols to safeguard
sensitive information
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Traditional approaches

• Suppression: removing names, addresses, or any other per-
sonal information
• Aggregation: provide summary statistics while obscuring
individual-level details
• Perturbation: adding noise or random variation to the data

Limitations of traditional approaches

• Re-identification attacks – use of auxiliary information or other
datasets
• Privacy and data utility trade-off
• Aggressive anonymization – loss of data utility
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Motivation for differential privacy

• Protecting sensitive information in datasets.
• Preventing re-identification of individuals through data analysis.
• Fostering trust between data collectors and individuals.
• Complying with privacy regulations and standards (e.g., Digital
Personal Data Protection Act 2023, of India and General Data
Protection Regulation (GRDP))



Local differential privacy (LDP)

• Introduced by Dwork et.al. 20061

• Single data point does not change the output

1Dwork, Cynthia, and Aaron Roth. “The algorithmic foundations of differential privacy.”
Foundations and Trends ® in Theoretical Computer Science 9.3–4 (2014): 211-407.



Local Differential Privacy

Privacy loss

c(o;M,aux,d,d′) :=
∣∣∣log P(M(aux,d)=o)

P(M(aux,d′)=o)

∣∣∣
• HereM is the randomized mechanism
• aux is auxiliary input
• d,d′ are neighbouring data points
• o is the outcome

Local differential privacy (Liao et.al. 2022)

A randomized mechanismM preserves (ϵ, δ)-LDP if

P(M(Du) ∈ U) ≤ eϵP(M(Du′) ∈ U) + δ, U ∈ U (1)

• ϵ ≥ 0, and δ ≥ 0 are user given privacy parameters
• Du,Du′ ∈ U are the datasets, differing in exactly one component,
corresponding to the users u and u′
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LDP (outline)

• Consider a task for which mean height, µ, is a crucial input
• Let D be a dataset of a cohort
• Height values of D need to be protected
• Anonymise them.
• One way is to ‘add noise’; say, U[−1, 1] (uniform rv, over [-1, 1]
interval) to the observed heights

• µ = µD + δµ

• µD is sample mean of heights
• δµ is the sample mean of U[−1, 1], is small, but not zero
• Consequences?
• Quantify the above error in the estimate?
• May be via concentration inequalities, etc.
• P(| δµ| ≤ ϵ) ≥ 1− δ for ϵ and δ?
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Differential privacy for multi-agent system

Multi-agent instance

(N,S, {Ai}i∈N,H, {rih}i∈N,h∈H, {Ph}h∈H, {Gt}t≥0)

• State is global information
• Each agent takes independent action
• However, they have a common objective
• Action is a private information; hence, reward is private
• Fixed finite horizon model, total reward criteria

Global state value function

Vπ
h (s) = Eπ

[∑H
h′=h r̄h′(sh′ , πh′(s

′
h))
]

• Here r̄h′(sh′ , πh′(s′h)) = 1
n
∑

i∈N r
i
h′(sh′ , πh′(s′h))



• Gt is time varying communication network used to exchange the
reward parameters w in a decentralized framework
• Particularly, the reward parameters are exchanged via Gt
• Thus, our MARL framework is fully decentralized

Global state-action value function

Qπ
h (s,a) = Eπ

[
r̄h(s,a) +

∑H
h′=h+1 r̄h′(sh′ , πh′(s

′
h))
]



Multi-agent local differential privacy

A randomized mechanismM preserves (ϵ, δ) MA-LDP if

P(M(Du) ∈ U) ≤ eϵP(M(Du′) ∈ U) + δ, U ∈ U . (2)

• ϵ ≥ 0, and δ ≥ 0 are user given privacy parameters
• Here Du = (D1

u,D2
u, · · ·Dn

u) ∈ U and Du′ = (D1
u′ ,D2

u′ , . . . ,Dn
u′) ∈ U

• Di
u and Di

u′ differs at exactly one component
• User u ∈ K is different from agent i ∈ N



Learning objective

Objective 1

Design a decentralized MA-LDP algorithm such that following
regret over K episodes is minimized

RK =
K∑

k=1

(
1

n
∑
i∈N

{V⋆,i
1 (sk1)− Vi1(sk1)}

)
(3)

V⋆,i
1 (sk1) is a global value function in the eyes of agent i with full

privacy (no privacy loss with full confidence)

We design a decentralized MA-LDP algorithm with sub-linear regret !



Noise adding mechanisms

• MA-LDP algorithm can handle any noise adding mechanisms
• We use Gaussian, Laplace, Uniform, and Bounded Laplace
• Gaussian and Laplace – unbounded supports

• Unbounded support noise mechanisms inject high noise to the
sensitive information, though with low probability
• Loss of data utility – motivates the bounded noise mechanisms
• Uniform and bounded Laplace mechanisms
• Bounded support of noise models capture finite precision arithmetic
of computers
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Learning objective

Objective 2

How does privacy and regret change with the noise distribution
support?

• Bounded mechanisms preserve the MA-LDP privacy
• We show that our MA-LDP algorithm has sub-linear regret.
• Regret depends on the end points and the parameters of the noise
distribution support!



Function approximations

• To address large state and action spaces

Linearity assumption

P(s′|s,a) = ⟨ϕ(s′|s,a),θ⋆⟩ for any triplet (s′,a, s) ∈ S ×A× S

Notation

PV(s,a) =
∑

s′∈S ⟨ϕ(s
′|s,a),θ⋆⟩ V(s′) = ⟨ϕV(s,a),θ⋆⟩, ∀ s,a

• Ridge regression to get optimal model parameters θ⋆

Linearity of reward functions

r̄(s,a;w⋆) = ⟨ψ(s,a),w⋆⟩, ∀ s,a

• The reward parameterization preserves the privacy of rewards (not
the LDP objective!)



Equivalence of optimization problems

• The least square minimizer of the reward function

min
w

Es,a [̄r(s,a)− r̄(s,a;w)]2. (OP 1)

• The above optimization problem is equivalently characterized as

min
w

n∑
i=1

Es,a[ri(s,a)− r̄(s,a;w)]2. (OP 2)

• OP1, and OP2 has same stationary points
• A key aspect of the decentralized algorithm

Reward parameters update

w̃i
t ← wi

t + γt · [rit(·, ·)− r̄(·, ·;wi
t)] · ∇w r̄(·, ·;wi

t)

wi
t+1 =

∑
j∈N lt(i, j)w̃

j
t

• lt(i, j) is the (i, j)-th entry of communication graph/matrix
• Result: wi

t → w⋆ almost surely for every agent i ∈ N



Some comments

• Our MA-LDP is decentralized algorithm 2:
• Each agent is independently taking the action
• Agents’ reward is a private information, and hence not known to
other agents
• The reward function is parameterized and the parameters are
shared across the agents
• This doesn’t effect the reward and action privacy
• The sensitive information is preserved by injecting the noise

2Kaitang Zhang et. al. Fully decentralized multi-agent reinforcement learning with
networked agents. ICML 2018.



Modified Bellman equation

• Let Vi(·) and Qi(·, ·) be the estimate of global V(·) and Q(·, ·) by agent i

Modified Bellman equation

Q⋆,i
h (s,a;wi

k,h) = r̄h(s,a;wi
k,h) + PhV⋆,i

h+1(s,a;w
i
k,h);

V⋆,i
h+1(s;w

i
k,h) = maxa∈A Q⋆,i

h (s,a;wi
k,h); V⋆,i

H+1(s;w
i
k,h) = 0

• Q⋆,i
h (s,a;wi

k,h), r̄h(s,a;wi
k,h) and V⋆,i

h (s;wi
k,h) are continuous functions

of wi
k,h

Result

Q⋆,i
h (s,a;wi

k,h)→ Q⋆
h(s,a) and V⋆,i

h (s;wi
k,h)→ V⋆

h(s), for all i ∈ N



MA-LDP algorithm design

• MA-LDP works in episodes
• Each user/episode receives the information from server
• The server updates the model parameters using the anonymized
information

θ̂
i
k+1,h ← (Σi

k+1,h)
−1ui

k+1,h (4)

• Here Σi and ui are anonymized sensitive information
• Server sends model parameters θ̂i to next user

• User, on the other hand, updates Qi
k,h according to the backward

induction algorithm
• Each agent thus take action

aik,h ← argmax
a∈Ai

min
a−i∈A−i

Qi
k,h(sk,h,a,a−i)

• The reward function parameters are shared via communication
network to preserve the privacy of rewards
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MA-LDP algorithm design

• The anonymized information is send to the server
• This server is different from the centralized server used in
centralized MARL
• Server performs the following updates
• Λi

k+1,h ← Λi
k,h +∆Λi

k,h

• ui
k+1,h ← ui

k,h +∆ui
k,h

• Σi
k+1,h ← Λi

k+1,h + ηI
• θ̂

i
k+1,h ← (Σi

k+1,h)
−1ui

k+1,h

• Here,
∆Λi

k,h ← ϕVik,h+1
(sk,h,ak,h)ϕVik,h+1

(sk,h,ak,h)⊤ +Wi
k,h

∆ui
k,h ← ϕVik,h+1

(sk,h,ak,h)Vik,h+1(sk,h+1) + ξik,h



Regret and privacy gurantees

• MA-LDP algorithm preserves LDP for various noise mechanisms
• For Gaussian mechanism MA-LDP is (ϵ, δ) private
• For Laplace it is (ϵ, 0)

• We introduce uniform and bounded Laplace mechanisms
• These preserve (0, δ), and (ϵ, 0) privacy respectively
• Thus, these noise mechanisms cover whole spectrum of the privacy
guarantees

• For each of the noise mechanisms – regret is sub-linear in K
• It is super-linear (not quadratic) in n, i.e., scales well with n
• For bounded Laplace, regret depends on the endpoint of the
support and the distribution parameters
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Main results

Mechanism Privacy Order of Regret
Gaussian (ϵ, δ) Õ((nd)5/4H7/4T3/4 log(ndT/α)(log(H/δ))1/4

√
1/ϵ)

Laplace (ϵ, 0) Õ((nd)5/4H7/4T3/4 log(ndT/α)
√

1/ϵ)

Uniform (0, δ) Õ((nd)5/4H7/4T3/4 log(ndT/α)(log(H/δ))1/4

Bounded Laplace (ϵ, 0) Õ((nd)5/4ζ1/4H1/4T3/4 log(ndT/α))

Table: Privacy guarantees and the order of regret for different noise adding
mechanisms. ζ denotes the variance of bounded Laplace distribution.

• ζ is function of end points of the support of bounded Laplace
distribution B and ϵ.
• For every noise mechanism, the regret is sub-linear in T = KH
• However, it scales super-linearly with the number of agents, n



Comparison of regret for different noise mechanisms

Theorem

If privacy parameters ϵ1 and ϵ2 are such that ϵ1 > ϵ2. Then, for
both the Gaussian and Laplace mechanisms we have that

RK(ϵ1) < RK(ϵ2).

Theorem

Let RG
K (ϵ),RL

K(ϵ) be the cumulative regret of the Gaussian and
Laplace mechanism respectively with privacy parameters ϵ, δ, and

H > 2. Then, RG
K (ϵ) > RL

K(ϵ).
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Regret of bounded Laplace

• We construct a BL distribution with parameter b and support [−B,B]

fBL(x;b) =

{
exp(−|x|/b)

2b(1−exp(−B/b)) , ∀ x ∈ [−B,B]
0, otherwise.

• The regret is sub-linear in T = KH and super-linear in n
• Regret of BL is either same or on par with the Laplace when
B = O(bγ) for γ ∈ [0, 1]

• Regret of BL is lower than Laplace if γ > 1 and (H3/ϵ)γ/2 < 1

B RBL
K

O(bγ), 0 ≤ γ ≤ 1 Õ((nd)5/4H7/4T3/4 log(ndT/α))
√

1/ϵ

O(bγ), γ > 1 Õ((nd)5/4H7/4H3γ/2T3/4 log(ndT/α))
√

1/ϵγ+1

Table: Regret bound for BL mechanism. MA-LDP algorithm with BL mechanism
offers the same order of regret as that of the Laplace mechanism when B = O(bγ)
for γ ∈ [0, 1]. Terms in red involve γ.



Proof Sketch

• Privacy analysis
• Show that privacy loss is bounded by ϵ with high probability δ
• ϵ, δ depends on the noise mechanism used

• Regret analysis
• Transition probability estimators are within specified range of
true optimal parameters (Lemma 1, next slide)
• Q⋆,i is indeed a good optimistic estimator (Lemma 2, next slide)
• Decomposition of regret and bounding each term

• The regret and privacy comparison across noise adding mechanisms



Proof sketch

Lemma 1 (informal statement)

For all i ∈ N, with probability at least 1− α/2, we have
||(Σi

k,h)
1/2(θ̂

i
k,h − θ⋆

h)|| ≤ βk

• Here βk are identified according to the noise mechanism used
• This proves that the optimistic estimators of the probability function
are with a specified range of the true optimal parameters

Lemma 2 (informal statement)

For all i ∈ N, we have Q⋆,i
h (s,a) ≤ Qi

k,h(s,a) and V⋆,i
h (s) ≤ Vik,h(s)

• The above lemma shows that the Q⋆,i is a good optimistic estimator
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Experiments

• The network consists of {sin, 1, 2, . . . , q,g} nodes
• Actions Ai = {−1, 1}d−1, d ≥ 2

• Objective: to reach the goal node while maximizing the overall
reward
• Reward of 5/1000 for any action in sin
• Reward of 1000 for any action in g
• Reward of 0 for any action in any other node

Figure: The MDP problem instance that we consider



Experiments

Figure: Cumulative regret with number of episodes for the Laplace and Gaussian
mechanism with 5% error bands. Codes are available here.

https://anonymous.4open.science/r/MALDP-5380


Discussions

• An observation: If the support of bounded noise distribution is
picked appropriately, the regret is lower than the unbounded
support noise mechanism
• Injecting a bounded noise is often sufficient for LDP without
substantially affecting the nature of the regret
• Bounded noise captures the realistic finite machine precision

• Another observation: Our regret bound is just (not quadratic)
super-linear in the number of agents and feature dimensions
• Scope for using better optimistic estimators of the state-action value
functions to improve the bounds
• Studying the bounded support noise mechanism with lower regret
bounds with low noise values would be interesting
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Thank You!


