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Google Fi suffers data breach,
customer info compromised

According to TechCrunch, Google Fi's primary network provider informed the
company that suspicious activity had been detected regarding a third-party
support system containing a "limited of data.
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Importance of data privacy

e Protection of personal information, financial records, and
health information, etc.

e Threat to organizations such as financial losses, and reputa-
tional damage, etc.
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e Threat to organizations such as financial losses, and reputa-
tional damage, etc.

Challenges in data privacy

e More sophisticated cyberattacks
e Widespread collection and storage of personal information

e Lack of security measures, encryption protocols to safequard
sensitive information




Traditional approaches

e Suppression: removing names, addresses, or any other per-
sonal information

e Aggregation: provide summary statistics while obscuring
individual-level details

e Perturbation: adding noise or random variation to the data




Traditional approaches

e Suppression: removing names, addresses, or any other per-
sonal information

e Aggregation: provide summary statistics while obscuring
individual-level details

e Perturbation: adding noise or random variation to the data

Limitations of traditional approaches

e Re-identification attacks - use of auxiliary information or other
datasets

e Privacy and data utility trade-off
e Aggressive anonymization - loss of data utility




I Motivation for differential privacy

Protecting sensitive information in datasets.
Preventing re-identification of individuals through data analysis.
e Fostering trust between data collectors and individuals.

Complying with privacy regulations and standards (e.g., Digital
Personal Data Protection Act 2023, of India and General Data
Protection Regulation (GRDP))



I Local differential privacy (LDP)

e Introduced by Dwork et.al. 2006’
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e Single data point does not change the output

"Dwork, Cynthia, and Aaron Roth. “The algorithmic foundations of differential privacy.”
Foundations and Trends ® in Theoretical Computer Science 9.3-4 (2014): 211-407.



I Local Differential Privacy

Privacy loss
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Here M is the randomized mechanism

e aux is auxiliary input
d,d’ are neighbouring data points
o is the outcome




I Local Differential Privacy

Privacy loss

c(o; M, aux, d, d") == )Iog P o)

e Here M is the randomized mechanism

aux is auxiliary input
d,d’ are neighbouring data points
e 0 is the outcome

Local differential privacy (Liao et.al. 2022)

A randomized mechanism M preserves (¢, §)-LDP if

P(M(Dy) € U) < e P(M(Dy) € U)+6, Ueld (1)

e ¢ >0,and d > 0 are user given privacy parameters

e Dy, D, € U are the datasets, differing in exactly one component,
corresponding to the users u and v’



I LDP (outline)

Consider a task for which mean height, y, is a crucial input
Let D be a dataset of a cohort

Height values of D need to be protected

e Anonymise them.

One way is to ‘add noise’; say, U[—1, 1] (uniform rv, over [-1, 1]
interval) to the observed heights



I LDP (outline)

e Consider a task for which mean height, y, is a crucial input
e Let D be a dataset of a cohort

e Height values of D need to be protected

e Anonymise them.

e One way is to ‘add noise’; say, U[—1, 1] (uniform rv, over [-1, 1]
interval) to the observed heights

o 1= pp+ 0y

e up is sample mean of heights

e 4, is the sample mean of U[—1, 1], is small, but not zero
e Consequences?

e Quantify the above error in the estimate?

e May be via concentration inequalities, etc.

o P(| 6, <€) >1-—4dforeandd?



I Differential privacy for multi-agent system

Multi-agent instance

(N, S, {AYien, H, {1} Yien,ner {Ph}hen, {Gete=o)

State is global information
Each agent takes independent action
e However, they have a common objective

Action is a private information; hence, reward is private
Fixed finite horizon model, total reward criteria

Global state value function

VE(s) = [Zh/ Th (S, Wh'(sfw))]

e Herery (Sh/,ﬂ'h/ (S;.,)) = %ZIGN rlh/(sh/,ﬂ'h/(s%))



e G is time varying communication network used to exchange the
reward parameters w in a decentralized framework

e Particularly, the reward parameters are exchanged via G;
e Thus, our MARL framework is fully decentralized

Global state-action value function

Q;; (S, a) =FE, [?h(s, a) + Eg/=h+l ?h’ (Sh/,ﬂ'h/ (SL))]




Multi-agent local differential privacy

A randomized mechanism M preserves (e, §) MA-LDP if

P(M(Dy) € U) < eP(M(Dy) € U) + 6, U € U. 2)

¢ > 0,and § > 0 are user given privacy parameters

Here D, = (D},DZ,---D}) e Y and Dy = (D}, D2,,...,D}) e U
D}, and D!, differs at exactly one component

e User u € Kis different from agentie N



I Learning objective

Design a decentralized MA-LDP algorithm such that following
regret over K episodes is minimized

Rk = Z < Z{V* 51 Vl 51)}) (3)
k=1 ieN

Vi (s¥) is a global value function in the eyes of agent i with full
privacy (no privacy loss with full confidence)

We design a decentralized MA-LDP algorithm with sub-linear regret !



I Noise adding mechanisms

e MA-LDP algorithm can handle any noise adding mechanisms
e We use Gaussian, Laplace, Uniform, and Bounded Laplace
e Gaussian and Laplace - unbounded supports



I Noise adding mechanisms

e MA-LDP algorithm can handle any noise adding mechanisms
e We use Gaussian, Laplace, Uniform, and Bounded Laplace
e Gaussian and Laplace - unbounded supports

e Unbounded support noise mechanisms inject high noise to the
sensitive information, though with low probability

e Loss of data utility - motivates the bounded noise mechanisms
e Uniform and bounded Laplace mechanisms

e Bounded support of noise models capture finite precision arithmetic
of computers



I Learning objective

Objective 2

How does privacy and regret change with the noise distribution
support?

e Bounded mechanisms preserve the MA-LDP privacy
e We show that our MA-LDP algorithm has sub-linear regret.

e Regret depends on the end points and the parameters of the noise
distribution support!



I Function approximations

e To address large state and action spaces

Linearity assumption

P(s’|s,a) = (¢(s'|s,a),0*) for any triplet (s’,a,5) e S x A x S

PV(s,a) = > g s (0(S']s,@),0") V(s') = (¢v(s,a),0%), V s,a

e Ridge regression to get optimal model parameters 6*

Linearity of reward functions

r(s,a;w*) = (¥(s,a),w*), V s,a

e The reward parameterization preserves the privacy of rewards (not
the LDP objective!)



I Equivalence of optimization problems
e The least square minimizer of the reward function
min Esq[r(s, @) — (s, a; w))’. (OP 1)
e The above optimization problem is equivalently characterized as
Lo .
min > Esalr(s, @) — (s, a;w)]”. (OP2)
i=1

e OP1, and OP2 has same stationary points
e Akey aspect of the decentralized algorithm

Reward parameters update

Wt W e [ 0) = 75 W] - Var( s wh)

W’£+1 = EjeN /t(iaj)ﬁ/t

e I:(i,j) is the (i,j)-th entry of communication graph/matrix
e Result: wi — w* almost surely for every agenti € N



I Some comments

e Our MA-LDP is decentralized algorithm 2:
e Each agent is independently taking the action

e Agents’ reward is a private information, and hence not known to
other agents

e The reward function is parameterized and the parameters are
shared across the agents

e This doesn't effect the reward and action privacy
e The sensitive information is preserved by injecting the noise

2Kaitang Zhang et. al. Fully decentralized multi-agent reinforcement learning with
networked agents. ICML 2018.



I Modified Bellman equation

e Let V/(-) and Q'(-, ) be the estimate of global V(-) and Q(-, ) by agent i

Modified Bellman equation

(s, a; W) = (s, a; Wi ) + PVl

h+1 (s, @; Wj(,h)Q

V*,i

ol (S; W) ) = Maxaca Q) (s, @, W) ,); Vil (s;wh,) =0

o Q;(s,a;w ), Fn(s, a; W} ,) and V;'(s; w ) are continuous functions
of wi,

V(s a;wl ) — Q;(s,a) and V' (s;w ) — Vi(s), forallie N




I MA-LDP algorithm design

MA-LDP works in episodes
Each user/episode receives the information from server

e The server updates the model parameters using the anonymized
information

h i —1,,

Okr1h < (Zky1n)” Ukrrh (4)
e Here X' and v’ are anonymized sensitive information
Server sends model parameters ¢’ to next user



I MA-LDP algorithm design

e MA-LDP works in episodes
e Each user/episode receives the information from server

e The server updates the model parameters using the anonymized
information

h i —1,,

Okr1h < (Zky1n)” Ukrrh (4)
e Here X' and v’ are anonymized sensitive information
e Server sends model parameters ¢ to next user

e User, on the other hand, updates Qf(,,, according to the backward
induction algorithm

e Each agent thus take action

aip < argmax min Qi ,(skn,a,a )
’ ac Al a—ieA—l

e The reward function parameters are shared via communication
network to preserve the privacy of rewards



I MA-LDP algorithm design

The anonymized information is send to the server

e This server is different from the centralized server used in
centralized MARL

Server performs the following updates
° A5<+1,h — A;(,h + AAZ,h
® Uy 1 p < Upp+ AUy
L _5(+1,h <~ AL+1,h +nl
° 9;<+1,h — (E;.(+1,h)71u2+1,h
e Here,

AAp — by (Skp,a . (Skp Okp) " + W,
koh ¢vfk1h+1(k,h7 k,h)‘lsv;ﬁhﬂ( kh Gkn) + Wip

AU p ¢, (Sk.h> Ahn)Vieh1 (Skns1) + Ekn
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I Regret and privacy gurantees

e MA-LDP algorithm preserves LDP for various noise mechanisms
e For Gaussian mechanism MA-LDP is (¢, §) private
e For Laplaceitis (¢, 0)

e We introduce uniform and bounded Laplace mechanisms
e These preserve (0,6), and (e, 0) privacy respectively

e Thus, these noise mechanisms cover whole spectrum of the privacy
guarantees

e For each of the noise mechanisms - regret is sub-linear in K
e Itis super-linear (not quadratic) in n, i.e., scales well with n

e For bounded Laplace, regret depends on the endpoint of the
support and the distribution parameters



I Main results

[ Mechanism [Privacy| Order of Regret |
Gaussian (¢,8) |O((nd)**H"/*T*/*10g(ndT/a)(log(H/5))*/*\/1/€)
Laplace (€,0) O((nd)>/*H™/*T3/* log(ndT/a)\/1/e)
Uniform (0,9) O((nd)>*H"/4T3/* 1og(ndT /) (log(H/6))*/4
Bounded Laplace| (e, 0) O((nd)>/A ¢ AHYAT3/4 log(ndT/ o))

Table: Privacy guarantees and the order of regret for different noise adding
mechanisms. ¢ denotes the variance of bounded Laplace distribution.

e (is function of end points of the support of bounded Laplace
distribution B and e.

e For every noise mechanism, the regret is sub-linear in T = KH
e However, it scales super-linearly with the number of agents, n



I Comparison of regret for different noise mechanisms

If privacy parameters e; and e, are such that e; > e2. Then, for
both the Gaussian and Laplace mechanisms we have that
RK(€1) < RK(EQ).




I Comparison of regret for different noise mechanisms

If privacy parameters e; and e, are such that e; > e2. Then, for
both the Gaussian and Laplace mechanisms we have that
RK(€1) < RK(EQ).

Let R%(¢), Rk(¢) be the cumulative regret of the Gaussian and
Laplace mechanism respectively with privacy parameters e, §, and
H > 2. Then, RS(e) > Rk(e).




I Regret of bounded Laplace

e We construct a BL distribution with parameter b and support [—B, B]

(—xl/b
' 0, otherwise.

The regret is sub-linear in T = KH and super-linear in n

e Regret of BL is either same or on par with the Laplace when
B = 0(b") for v € [0, 1]

Regret of BL is lower than Laplace if v > 1 and (H*/e)"/? < 1

| B | R |

o), 0<~y<1 O((nd)**H™/4T3/%log(ndT/))\/1/€
0(b"),y>1 | O((nd)>*H*H/?T3/* log(ndT/a))/1/e7+1

Table: Regret bound for BL mechanism. MA-LDP algorithm with BL mechanism

offers the same order of regret as that of the Laplace mechanism when B = O(b”)
for v € [0,1]. Terms in red involve ~.




I Proof Sketch

e Privacy analysis
e Show that privacy loss is bounded by e with high probability §
e ¢,6 depends on the noise mechanism used

e Regret analysis

e Transition probability estimators are within specified range of
true optimal parameters (Lemma 1, next slide)

e Q*'isindeed a good optimistic estimator (Lemma 2, next slide)

e Decomposition of regret and bounding each term

e The regret and privacy comparison across noise adding mechanisms



I Proof sketch

Lemma 1 (informal statement)

For all i € N, with probability at least 1 — /2, we have
1(Zkn)2 O — O7)I] < Be

e Here S are identified according to the noise mechanism used

e This proves that the optimistic estimators of the probability function
are with a specified range of the true optimal parameters



I Proof sketch

Lemma 1 (informal statement)

For all i € N, with probability at least 1 — /2, we have
1(Zkn)2 O — O7)I] < Be

e Here S are identified according to the noise mechanism used

e This proves that the optimistic estimators of the probability function
are with a specified range of the true optimal parameters

Lemma 2 (informal statement)

For all i € N, we have Q;'(s, a) < Q) (s, @) and V;(s) < Vi ,(s)

e The above lemma shows that the Q*/ is a good optimistic estimator



I Experiments

e The network consists of {s;,,1,2,...,q9,9} nodes
Actions A' = {-1,1}9"!, d > 2

Objective: to reach the goal node while maximizing the overall
reward

e Reward of 5/1000 for any action in sj,
Reward of 1000 for any action in g
Reward of 0 for any action in any other node

Figure: The MDP problem instance that we consider



I Experiments

166 N=2,H=5,q =1, L= Laplace; G = Gaussian
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Figure: Cumulative regret with number of episodes for the Laplace and Gaussian
mechanism with 5% error bands. Codes are available here.


https://anonymous.4open.science/r/MALDP-5380

I Discussions

e An observation: If the support of bounded noise distribution is
picked appropriately, the regret is lower than the unbounded
support noise mechanism

e Injecting a bounded noise is often sufficient for LDP without
substantially affecting the nature of the regret

e Bounded noise captures the realistic finite machine precision



I Discussions

e An observation: If the support of bounded noise distribution is
picked appropriately, the regret is lower than the unbounded
support noise mechanism

e Injecting a bounded noise is often sufficient for LDP without
substantially affecting the nature of the regret

e Bounded noise captures the realistic finite machine precision

e Another observation: Our regret bound is just (not quadratic)
super-linear in the number of agents and feature dimensions

e Scope for using better optimistic estimators of the state-action value
functions to improve the bounds

e Studying the bounded support noise mechanism with lower regret
bounds with low noise values would be interesting



Thank You!



