

Bots, Socks, and Vandals: Malicious Actors on the Web

V.S. Subrahmanian Dartmouth College vs@dartmouth.edu @vssubrah

Joint work with many students, postdocs, and colleagues !

Dartmouth

How Trolls Are Ruining the Internet

When Will the Internet Be Safe for Women?

Wikipedia blocks hundreds of 'scam' sock puppet accounts

FAKE NEWS IS ABOUT TO GET EVEN Scarier than you ever dreamed

Fake reviews on the Play Store reportedly growing and getting smarter

Time (2016); The Atlantic (2016); BBC (2015), Vanity Fair (2017), Digital Trends (20

Outline of talk

• Online Marketplaces: Review Fraud

- News & Other Discussion Forms: Sockpuppet Accounts
- Wikipedia: Vandals
- Twitter: Bots
- Malicious Actors The Next Generation

Rev2: Fraudulent User Prediction in Rating Platforms S. Kumar, B. Hooi, D. Makhija, M. Kumar, C. Faloutsos and V.S. Subrahmanian. WSDM 2018. **Used in production at Flipkart, India**

Review Fraduct Ingrassased Revenues

rating increases revenue by 5-9% on Yelp (*Luca et al., Management Sci.,*

Makhija et al, 2016, Luca et al., 2016

Review Fraud, I: Review Fraudsters Have Stronger Opinions

Review Fraud, II: Review Fraudsters Generate Reviews Faster

User Inter-Rating Time Profile

Review Fraud, III: Fraudsters Review Each Other

Alpha

- REV2 automatically identified a coordinated group/cluster of users who
 - Rate others in the group positively
 - Rate many outside the group negatively
- Past efforts that use rating and time distributions are unable to identify

REV2 Algorithm: Unsupervised

- Represents data via a bipartite graph consisting of three kinds of entities
 - □ *User* nodes: Authors of reviews.
 - Each user *u* has an associated *fairness f(u).*
 - Product nodes: Subject of reviews.
 - Each product p has an associated goodness g(p).
 - Review edges: Link users to products they have reviewed.
 - Each review r has an associated reliability rel(r).
- We have to discover these

Red edge = -1, green edge = +1 rating

REV2: Fairness

REV2: Goodness

$$G(p) = \frac{\sum_{(u,p)\in In(p)} R(u,p) \cdot \text{score}(u,p)}{|In(p)|}$$

discounted rating of a single review.

 Summation: Expected sum of discounted ratings of all reviews of a product.

11

REV2: Reliability

REV2 Algorithm: Initialization

Initialize all variables to 1

13

REV2 Algorithm: Update Goodness

REV2 Algorithm: Update Reliability

$$R(u,p) = \frac{1}{\gamma_1 + \gamma_2} (\gamma_1 \cdot F(u) + \gamma_2 \cdot (1 - \frac{|\operatorname{score}(\mathsf{u},\mathsf{p}) - G(p)|}{2}))$$

Used $\gamma_1 = \gamma_2 = 1$ in the example.

REV2 Algorithm: Update Fairness

$$F(u) = \frac{\sum_{(u,p) \in \text{Out}(u)} R(u,p)}{|\text{Out}(u)|}$$

REV2 Algorithm: Convergence State

But.... Cold Start Problem

- Most products get only a few ratings
- Most reviewers provide only a small number of reviews
- Add Bayesian Priors

$$F(u) = \frac{\sum (u,p) \in \text{Out}(u) R(u,p) + \alpha_1 \cdot \mu_f}{|\text{Out}(u)| + \alpha_1}$$
$$G(p) = \frac{\sum (u,p) \in \text{In}(p) R(u,p) \cdot \text{score}(u,p) + \beta_1 \cdot \mu_g}{|\text{In}(p)| + \beta_1}$$

- μ_f , μ_p values are mean fairness and goodness scores over all user and product nodes, respectively.
- $\alpha_1, \beta_1 \ge 0$ are weight denoting importance of the mu values.

But...: What about Behavioral Properties?

18

Updated REV2 Formulas

Unsupervised Prediction

	Unfair user prediction				Fair user prediction					
	OTC	Alpha	Amazon	Epinions	Flipkart	OTC	Alpha	Amazon	Epinions	Flipkart
FraudEagle	93.67	86.08	47.21	пс	пс	86.94	71.99	96.88	пс	пс
BAD	79.75	63.29	55.92	58.31	79.96	77.41	68.31	97.19	97.09	38.07
SpEagle	74.40	68.42	12.16	пс	nc	80.91	82.23	93.42	пс	пс
BIRDNEST	61.89	53.46	19.09	37.08	85.71	46.11	77.18	93.32	98.53	62.47
Trustiness	74.11	49.40	40.05	nc	пс	84.09	78.19	97.33	пс	nc
REV2	96.30	75.29	64.89	81.56	99.65	92.85	84.85	100.0	99.81	42.83

Supervised Prediction (using Random Forest)

	OTC	Alpha	Amazon	Epinions	Flipkart	127 of 15
FraudEagle	0.89	0.76	0.81	пс	nc	fake revi
BAD	0.79	0.68	0.80	0.81	0.64	Flipkart o
SpEagle	0.69	0.57	0.63	nc	nc	REV2 is
BIRDNEST	0.71	0.73	0.56	0.84	0.80	Flipkart.
Trustiness	0.82	0.75	0.72	пс	nc	 2000- Comb
SpEagle+	0.55	0.66	0.67	nc	nc	of
SpamBehavior	0.77	0.69	0.80	0.80	0.60	fairne
Spamicity	0.88	0.74	0.60	0.50	0.82	ess so
ICWSM'13	0.75	0.71	0.84	0.82	0.82	under
REV2	0.90	0.88	0.85	0.90	0.87	paran sottin

127 of 150 reported fake reviewers in Flipkart correct. REV2 is in use at Flipkart.

2000+ reatures

 Combinations of fairness/goodn ess scores under various parameter

Robustness of REV2

REV2 provides robust predictions regardless of the amount of data used for training.

Outline of talk

- Online Marketplaces: Review Fraud
- News & Other Discussion Forms: Sockpuppet Accounts
- Wikipedia: Vandals
- Twitter: Bots
- Malicious Actors The Next Generation

An Army of Me: Sockpuppets in Online Discussion Communities. S. Kumar, J. Cheng, J. Leskovec and V.S. Subrahmanian. Proceedings of the 26th International World Wide Web Conference (WWW), 2017. Best Paper Award Honorable Mention Being transitioned to both Wikipedia and Reddit.

Users

Sockpuppets

Articles

Posts

Sock Example

Why DC is better than Marvel 🛟 IGN®

April 28, 2013 by Eric_17

bdiaz209April 28 2013, 11PMPossibly the best blog I've ever read major props to you

Eric_17April 28 2013, 12AMThanks. I knew Marvel fans would try to flame me, but they
have nothing other than "oh that's your opinion" instead of
coming up with their own argument

FellstrikeApril 29 2013, 6PMQuit talking to yourself, ******. Get back on yourmeds if you're going to do that

bdiaz209 only posts on this discussion to support and defend Eric_17

Defining Socks

Sockpuppets are accounts that post from the same IP address in the same discussion very close in time (15 min), in at least 3 different instances.

3656 Sockpuppets 1653 puppet masters IP addresses only used for ground truth, not for prediction.

Where do Sockpuppet Accounts Post?

28

How do sockpuppets write?

Upvote each other more

 $p < 10^{-3}$

How do sockpuppets interact?

jakey008 Feb 5 2013, 2PM should have read the reviews first :(

ricobeans27 Feb 5 2013, 3PM Couldn't agree more.

Falcon-X32Feb 5 2013, 3PMI agree. You are absolutely right!

Smoothzilla Feb 5 2013, 3PM Thanks for your support!!!!

Interact more with each other $p < 10^{-3}$

Double-Life Hypothesis

Double life hypothesis: Puppetmaster maintains distinct personality for the two sockpuppets

Similarity is measured as cosine similarity between user posts' features: LIWC, sentiment, number of words, etc.

Alternate Hypothesis

Alternate hypothesis: Puppetmaster operates both sockpuppets similarly

Similarity is measured as cosine similarity between user posts' features: LIWC, sentiment, number of words, etc.

Alternate Hypothesis wins

Both sockpuppets are more similar to each other $p < 10^{-3}$ "Good sock/Ba d sock" not common

Are socks intended to be deceptive?

Pretender vs. Non-Pretender Behavior

Sockpuppet Types: Neutral

We quantify the amount of support by counting assenting, negation and dissenting words from LIWC

srijan Feb 5 2013, 3PM best article ever!

theRealBatman why so?

Feb 5 2013, 3PM

60% Neutral

Sockpuppet Types: Supporting

We quantify the amount of support by counting assenting, negation and dissenting words from LIWC

Feb 5 2013, 3PM best article ever!

srijan

theRealBatman Totally agree!! Feb 5 2013, 3PM

Sockpuppet Types: Dissenting

We quantify the amount of support by counting assenting, negation and dissenting words from LIWC

Feb 5 2013, 3PM best article ever!

srijan

theRealBatman don't think so

Feb 5 2013, 3PM

30% 10% 60% Supporter Dissenter Neutral

38

Predicting Socks: Features

Activity-based Post-based Community-based Number of postsNumber of wordsNumber of upvotes number of replies reciprocity of posts age of account ... Sentiment

Predicting Socks: Is Account A a Sock?

AUC

39

Predicting Socks: Are accounts A,B a sock pair?

AUC

40

41

Outline of talk

- Online Marketplaces: Review Fraud
- News & Other Discussion Forms: Sockpuppet Accounts
- Wikipedia: Vandals
- Twitter: Bots
- Malicious Actors The Next Generation

VEWS: A Wikipedia Vandal Early Warning System. S. Kumar, F. Spezzano and V.S. Subrahmanian. Proceedings of the 21st ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD), 2015.

Vandals at Work

7% edits
involve vandalism
3-4 % editors
are vandals

VEWS Data

34,000 Editors Half are vandals

770,000 Edits 160,000 edits by vandals

Time: Jan 2013 - July 2014

Data available at: https://www.cs.umd.edu/~vs/vews/

Read Edit View history

Wikipedia Pages: Article & Talk

Article

WIKIPEDIA The Free Encyclopedia

Main page Contents Featured content Current events Random article Donate to Wikipedia Wikipedia store

Interaction

Help About Wikipedia Community portal Recent changes Contact page Tools What links here Related changes Upload file Special pages Permanent link Page information

Wikidata item Cite this page

Print/export Create a book Download as PDF Printable version

	Participate in	n an international	I science pho	to competition!
--	----------------	--------------------	---------------	-----------------

The Green (Dartmouth College)

From Wikipedia, the free encyclopedia

The Green (formally the College Green)^[1] is a grass-covered field and common space at the center of Dartmouth College, an lvy League university located in Hanover, New Hampshire, United States. It was among the first parcels of land obtained by the College upon its founding in 1769, and is the only creation of the 18th century remaining at the center of the campus.^[2] After being cleared of pine trees, it initially served as a pasture and later as an athletic field for College sporting events. Today, it is a central location for rallies, celebrations, and demonstrations, and serves as a general, all-purpose recreation area. The College describes the Green as "historic" and as the "emotional center" of the institution.^{[1][3]}

Contents [hide]
1 Geography
2 History
3 Uses
3.1 Rallies and protests
3.2 Traditions and celebrations
4 See also
5 Notes
6 References
7 External links

Geography [edit]

Search Wikipedia

Solution Not logged in Talk Contributions Create account Log in

Learn more

Coordinates: Q 43°42'12"N 72°17'19"W

Q

 \otimes

(())

View of the Green looking south from the tower of Baker Memorial Library, shortly after the annual Homecoming bonfire. The Hopkins Center for the Arts (left) and the Hanover Inn (right) are visible on the opposite side.

The Green is a five-acre (two-hectare) plot located in the center of downtown Hanover, New Hampshire.^{[2][4]} It is crossed by seven gravel walking paths, the locations of which varied until about 1931, when the configuration was last altered.^[2] Three of them bisect the Green, running southwest to northeast, northwest to southeast, and east to west. The northernmost of its two east-west paths was added after Massachusetts Hall was constructed in 1907, and links the central entrance to that dormitory

Vandals rarely talk to others!

Vandals edit in rapid-fire mode

Pairwise edit features

Time x Type of page x First edit x Distance x Similarity x Reverted or not 47

Transition Features

X[i,j] = probability that feature vector j occurs immediately after feature vector i

VEWS Predictive Accuracy

VEWS identifies 87% of vandals on or before first reversion.

44% of vandals are identified before first reversion.

VEWS' Speed in Identifying Vandals

VEWS identifies vandals (on average) in 2.13 edits.

Reversion Information Helps (a little)

Combining with Past Work Helps

53

Outline of talk

- Online Marketplaces: Review Fraud
- News & Other Discussion Forms: Sockpuppet Accounts
- Wikipedia: Vandals
- Twitter: Bots
- Malicious Actors The Next Generation

V.S. Subrahmanian et al. "The DARPA Twitter bot challenge." *Computer* 49.6 (2016): 38-46.

Dickerson, John P., Vadim Kagan, and V. S. Subrahmanian. "Using sentiment to detect bots on twitter: Are humans more opinionated than bots?." *Advances in Social Networks Analysis and Mining (ASONAM), 2014 IEEE/ACM International Conference on*. IEEE, 2014.

Bots in the 2014 India Election

- Largest democratic election in human history
 Tracked 31 topics (national politicians, political parties) over 10 month period
- Over
 - 17M users
 - 25M posts (after eliminating irrelevant posts from a ~600M tweet data set)
 - 45M edges

Features

Tweet Syntax

- #hashtags, #mentions, #links, etc
 Tweet Semantics
- Sentiment related features for user

User Behavior

- Tweet spread/frequency/repeats/geo
- Tweet volume histograms by topic
- Sentiment: normalized flip flops(t), variance(t), monthly variance(t)

User Neighborhood (and behavior)

 Multiple measures looking at agreement/ disagreement between user sentiments and those of people in his neighborhood

ContradicitionaRank

- where $x_t^+ y_t^- + x_t^- y_t^+$ where
 - is the itraction coils n'of tweetse with waterstein and that the people is we want that
 - -is the interestion contract of the second sec
 - ,- d&fin&d similarly

Agreement Rack AR $(\mu, t) = x_t^+ y_t^+ + x_t^- y_t^-$

Dissonance early DR(u) = \sum_{t \in TOI} \frac{CR(u,t)}{AR(u,t)}

Positives Santimente Strength

- Average gestiment score (for t) from wstweets that have populative about t

+/- Semiment no Poits Fity fraction

- PerPerpendersof of s'tweets on t that are posposely regardered

Bots vs. Humans

Top 25 Important Features

Bots vs. Humans?

- Who flip flops more?
- Whose positive opinions are stronger?
- Whose negative opinions are stronger?
- Who tend to write more tweets with sentiment?
- Who tend to disagree more?

Bots vs. Humans

DARPA Twitter Bot Chall

TABLE 1. Results of the DARPA Twitter Bot Challenge.

Team	Misses	Hits	Guesses	Accuracy	Speed	Final score
SentiMetrix	1	39	40	38.75	12	50.75
University of Southern California	0	39	39	39.00	6	45.00
DESPIC	7	39	46	37.25	6	43.25
IBM	4	39	43	38.00	5	43.00
Boston Fusion	9	39	48	36.75	5	41.75
Georgia Tech	56	38	94	24.00	0	24.00

The accuracy column is the value (h = 0.25m), where h is the number of hits (correct guesses) and m is the number of misses (incorrect guesses). The speed column equals the number of days remaining in the challenge after the team had discovered all bots. DESPIC is the Indiana University/University of Michigan team. For each team t, FinalScore(t) = Hits(t) = 0.25 × Misses(t) + Speed.

Phase 1 (9 days)

Identify an initial set of bots through assessment of how bot developers would operate.

66 features

Phase 2 (3 days)

Semi-supervised clustering with different similarity functions & outlier detection

Total about ~125 features

Phase 3 (4 days)

Straight machine learning using SVM and Random Forest ensemble

Total about ~175 features

Outline of talk

- Online Marketplaces: Review Fraud
- News & Other Discussion Forms: Sockpuppet Accounts
- Wikipedia: Vandals
- Twitter: Bots

• Malicious Actors - The Next Generation

Malicious Actors on Social Platforms: The Future

- Cross platform Coordinated attacks across multiple platforms
- **Distributed, low key** Low key activities within each platform
- **Conformity** Greater conformance with opinion within local communities with small efforts to shift opinion
- Greater engagement of bots and malicious actors with existing communities online
- Combination with traditional cyber methods Combine social attacks with more traditional hacks

Contact Information

V.S. Subrahmanian Dept. of Computer Science Dartmouth College Hanover, NH 03755 <u>vs@dartmouth.edu</u> @vssubrah www.cs.dartmouth.edu/vs/

61