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Time (2016); The Atlantic (2016); BBC (2015), Vanity Fair (2017), Digital Trends (2017)



Outline of talk

•Online Marketplaces: Review Fraud
•News & Other Discussion Forms: Sockpuppet Accounts
•Wikipedia: Vandals
•Twitter: Bots
•Malicious Actors – The Next Generation
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Rev2: Fraudulent User Prediction in Rating Platforms
S. Kumar, B. Hooi, D. Makhija, M. Kumar, C. Faloutsos and V.S. Subrahmanian. 

WSDM 2018. Used in production at Flipkart, India



Review Fraud  Increased Revenues 
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+1 increase in star 
rating increases 
revenue by 5-9% on 
Yelp (Luca et al., 
Management Sci., 
2016).



Review Fraud, I: Review Fraudsters Have Stronger 
Opinions

@vssubrah 
vs@dartmouth.edu

5

 



Review Fraud, II: Review Fraudsters Generate 
Reviews Faster
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Review Fraud, III: Fraudsters Review Each Other 
Positively 
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Sample Discoveries on Bitcoin 
Alpha

• REV2 automatically identified a 
coordinated group/cluster of users 
who

• Rate others in the group positively
• Rate many outside the group 

negatively
• Past efforts that use rating and time 

distributions are unable to identify 
such coordinated groups of users.



REV2 Algorithm: Unsupervised
• Represents data via a bipartite graph 

consisting of three kinds of entities
▫ User nodes: Authors of reviews. 

 Each user u has an associated 
fairness f(u).

▫ Product nodes: Subject of reviews. 
 Each product p has an associated 

goodness g(p).
▫ Review edges: Link users to products 

they have reviewed.
 Each review r has an associated 

reliability rel(r).
• We have to discover these 

values.
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Goodness 
 

Fairness
 

  R 

Red edge = -1, green edge = +1 rating



REV2:  Fairness
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Fairness = average reliability of 
user’s reviews.



REV2:  Goodness
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• R(u,p)*Score(u,p): Captures 
discounted rating of a single 
review.

• Summation: Expected sum of 
discounted ratings of all reviews of 
a product.

• Average rating of the product.



REV2:  Reliability
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• Fairness of the user
• Deviation of user’s score from 

goodness – penalize high deviation



REV2 Algorithm: Initialization
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Initialize all 
variables to 1



REV2 Algorithm: Update Goodness
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REV2 Algorithm: Update Reliability
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Used in the example. 



REV2 Algorithm: Update Fairness
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REV2 Algorithm: Convergence State 

@vssubrah 
vs@dartmouth.edu

16



But…. Cold Start Problem
• Most products get only a few ratings
• Most reviewers  provide only a small number of reviews
• Add Bayesian Priors
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• values are mean fairness and 
goodness scores over all user 
and product nodes, 
respectively.

• are weight denoting importance 
of the mu values.

 



But….: What about Behavioral Properties?
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Rating distribution Time-stamp distribution

Use BIRDNEST score of reviewers and products
(Hooi et al., 2016)



Updated REV2 Formulas
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Unsupervised Prediction
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Supervised Prediction (using Random 
Forest)
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• 2000+ features
• Combinations 

of 
fairness/goodn
ess scores 
under various 
parameter 
settings.

127 of 150 reported 
fake reviewers in 
Flipkart correct.
REV2 is in use at 
Flipkart.



Robustness of REV2
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REV2 provides robust predictions regardless of the amount 
of data used for training.



Outline of talk

•Online Marketplaces: Review Fraud
•News & Other Discussion Forms: Sockpuppet 

Accounts
•Wikipedia: Vandals
•Twitter: Bots
•Malicious Actors – The Next Generation
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An Army of Me: Sockpuppets in Online Discussion Communities. 
S. Kumar, J. Cheng, J. Leskovec and V.S. Subrahmanian. Proceedings of 
the 26th International World Wide Web Conference (WWW), 2017.
Best Paper Award Honorable Mention
Being transitioned to both Wikipedia and Reddit.



Sockpuppets
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Sock Example
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bdiaz209 only 
posts on this 
discussion to 
support and 

defend Eric_17



Defining Socks
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Sockpuppets are accounts that post from the 
same IP address in the same discussion very close in time 

(15 min), in at least 3 different instances.

3656 Sockpuppets
1653 puppet 

masters

IP addresses only 
used for ground 

truth, not for 
prediction.



Where do Sockpuppet Accounts Post?
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Falcon-X32 Feb 5 2013, 3PM
I agree. You are absolutely right!

How do sockpuppets write?
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jakey008 Feb 5 2013, 2PM
should have read the reviews first :(
ricobeans27 Feb 5 2013, 3PM
Couldn’t agree more!!

Agree 
more

p < 10-3

Start fewer 
discussions

p < 10-3

Address 
others 
directly
p < 10-3

More self 
centered
p < 10-3

Use short 
sentences
p < 10-3

Down-voted 
more

p < 10-3



How do sockpuppets interact?
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Double-Life Hypothesis
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Alternate Hypothesis
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Alternate Hypothesis wins
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“Good 
sock/Ba
d sock” 
not 
common



Are socks intended to be deceptive?
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Pretender vs. Non-Pretender Behavior
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Sockpuppet Types: Neutral
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Sockpuppet Types: Supporting
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Sockpuppet Types: Dissenting
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Predicting Socks: Features
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Activity-based
Number of posts
number of replies

 reciprocity of posts
age of account

…

Post-based
Number of words

characters
LIWC counts
Readability
Sentiment

…

Community-based
Number of upvotes

Number of downvotes
… 



Predicting Socks: Is Account A a Sock?
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Predicting Socks: Are accounts A,B a sock 
pair? 
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Outline of talk

•Online Marketplaces: Review Fraud
•News & Other Discussion Forms: Sockpuppet Accounts
•Wikipedia: Vandals
•Twitter: Bots
•Malicious Actors – The Next Generation
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VEWS: A Wikipedia Vandal Early Warning System. 
S. Kumar, F. Spezzano and V.S. Subrahmanian. Proceedings of the 21st 
ACM SIGKDD International Conference on Knowledge Discovery and Data 
Mining (KDD), 2015. 



Vandals at Work
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~ 7% edits 
involve vandalism
~ 3-4 % editors 
are vandals 



VEWS Data
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Data available at: https://www.cs.umd.edu/~vs/vews/  

https://www.cs.umd.edu/~vs/vews/


Wikipedia Pages: Article & Talk
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Vandals rarely talk to others!
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Vandals edit in rapid-fire mode
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Pairwise edit features
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Transition Features
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0.
5

0.
5 X[i,j] = probability that 

feature vector j occurs 
immediately after 
feature vector i



VEWS Predictive Accuracy
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• VEWS identifies 87% 
of vandals on or 
before first 
reversion.

• 44% of vandals are 
identified before first 
reversion.



VEWS’ Speed in Identifying Vandals
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VEWS identifies 
vandals (on 

average) in 2.13 
edits.



Reversion Information Helps (a little)
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Combining with Past Work Helps
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Outline of talk

•Online Marketplaces: Review Fraud
•News & Other Discussion Forms: Sockpuppet Accounts
•Wikipedia: Vandals
•Twitter: Bots
•Malicious Actors – The Next Generation
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V.S. Subrahmanian et al. "The DARPA Twitter bot challenge." Computer 
49.6 (2016): 38-46.

Dickerson, John P., Vadim Kagan, and V. S. Subrahmanian. "Using 
sentiment to detect bots on twitter: Are humans more opinionated than 
bots?." Advances in Social Networks Analysis and Mining (ASONAM), 2014 
IEEE/ACM International Conference on. IEEE, 2014.



Bots in the 2014 India Election
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• Largest democratic election in human history
• Tracked 31 topics (national politicians, political 

parties) over 10 month period
• Over 

• 17M users
• 25M posts (after eliminating irrelevant posts 

from a ~600M tweet data set)
• 45M edges



Features
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Tweet Syntax
• #hashtags, #mentions, #links, etc
Tweet Semantics
• Sentiment related features for user
User Behavior
• Tweet spread/frequency/repeats/geo 
• Tweet volume histograms by topic
• Sentiment: normalized flip flops(t), 

variance(t), monthly variance(t)
User Neighborhood (and behavior)
• Multiple measures looking at agreement/

disagreement between user sentiments 
and those of people in his neighborhood

Contradiction Rank
•  where

–  is the fraction of u’s tweets with sentiment 
that are positive w.r.t. t

–  is the fraction of all tweets [not just u’s] with 
sentiment that are positive w.r.t. t

– ,  defined similarly

Agreement Rank A
Dissonance rank 

Positive Sentiment Strength
– Average sentiment score (for t) from u’s tweets 

that are positive about t

+/- Sentiment Polarity Fraction
– Percentage of u’s tweets on t that are 

positive/negative

 



Bots vs. Humans
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Bots vs. Humans?

• Who flip flops more?
• Whose positive opinions are 

stronger?
• Whose negative opinions are 

stronger? 
• Who tend to write more tweets 

with sentiment?
• Who tend to disagree more?



Bots vs. Humans
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DARPA Twitter Bot Challenge
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Outline of talk

•Online Marketplaces: Review Fraud
•News & Other Discussion Forms: Sockpuppet Accounts
•Wikipedia: Vandals
•Twitter: Bots
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Malicious Actors on Social Platforms: The 
Future
•Cross platform Coordinated attacks across multiple 

platforms
•Distributed, low key Low key activities within each 

platform
•Conformity Greater conformance with opinion within 

local communities with small efforts to shift opinion
•Greater engagement of bots and malicious actors with 

existing communities online
•Combination with traditional cyber methods 

Combine social attacks with more traditional hacks
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