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Access Control Policies

Picture credit: “Computer Security in the Real World”, B. Lampson 
2004 

Core Mechanisms:

authenticating principals—
determines who made a request; 
principals usually are people, but they 
also can be groups, channels, or 
programs; 

authorizing access—determines who 
is trusted to do which operations on an 
object; 

auditing the guard’s decisions—
makes it possible to determine later 
what happened and why.



Bell and LaPadula Model

• Each user subject and 
information object
has a fixed security class – 
labels

• Use the notation ≤ to indicate 
dominance

• Simple Security (ss) property:
 the no read-up property
–A subject s has read access to 

an object iff the class of the 
subject C(s) is greater than or 
equal to the class of the object 
C(o)
– i.e. Subjects can read Objects iff 

C(o) ≤ C(s)
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Bell and LaPadula Model

• Each user subject and 
information object
has a fixed security class – 
labels

• Use the notation ≤ to 
indicate dominance

• Simple Security (ss) 
property:
  the no write-down property
–While a subject has read 

access to object O, the subject 
can only write to object P  if
C(O) ≤ C (P)

Top Secret

Secret

Unclassified

Subjects
Top Secret

Secret

Unclassified

Objects
Write OK



Our interest: Data Use policies

• Once you have access, what are you allowed to do with 
the data?
• These are called “use policies”

• Notion of purpose is important: In many cases we need to specify 
usage for specific purposes such as “for fraud detection” or “for 
advertising”
• Policies need to be specified independent of the program (since 

policies can change depending on regulation changes, for 
example)
• Policies need to be specified across implementations in many 

programming languages

• This talk:
• Specifying and checking data use policies



Overview of this talk

• Part 1. Specifying and checking data use policies in 
online services
• Part 2. Specifying and checking data use in enclave 
programs
• Part 3. Thoughts on combining the above two ideas
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Data Use Policies: Compliance 
Challenge
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• 77,000 jobs run each day
• 1.1 million unique lines of 
code
• Significant Churn

•Manual audit infeasible



Legalese

S. Sen, S. Guha, A. Dutta, S. Rajamani, J. Tsai and J. 
Wing,  
“Bootstrapping Privacy Compliance in Big Data 
Systems,” In Proceedings of the 35th IEEE 
Symposium on Security & Privacy (Oakland), San 
Jose, CA, May 2014. 



Legalese

DENY Datatype IPAddress

   UseForPurpose Advertising

EXCEPT

   ALLOW 

     Datatype IPAddress:Truncated

   ALLOW

     UseForPurpose AbuseDetect

        EXCEPT

            DENY Datatype
                         IPAddress, 
AccountInfo
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We will not use full 
IP Address for 
Advertising. IP 
Address may be used 
for detecting abuse. 
In such cases, it will 
not be combined with 
account 
information.



Lattice of policy labels
• If IPAddress is 
allowed, then 
everything below 
is allowed
• If 
IPAddress:Truncat
ed is denied then 
everything above 
it is denied
• Type state is 
modeled as 
transition over 
labels



More encodings for Bing policies



Another example



A Streamlined Audit Workflow

Legal Team
Crafts PolicyPrivacy 
Champion
Interprets Policy

Developer
Writes Code

Audit Team
Verifies Compliance

Grok
Data inventory with policy labels

Legalease
A formal policy specification language

Encode Refine

Code analysis

Checker

Annotated
Code

Legalease
Policy

Potential violations

Fix code

Update Grok
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Developer annotations



Map-Reduce 
Programming 
Systems

Scope, Hive, Dremel
Data in the form of Tables

Code Transforms Columns 
to Columns 

No Shared State
Limited Hidden Flows

Process 
1

Dataset 
A

Dataset 
B

Dataset 
C



Data Inventory
Annotate code + data 
with policy data types. 
Expensive!
We performs “type 
inference”. That is 
propagate labels via 
data flow graph
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Combine Noisy Sources

Carefully curated 
regular expressions

Leverages developer 
conventions

Significant Noise

Variable Name 
Analysis

Developer 
Annotations

Auditor 
Verification

Expensive

Low Noise

Very Expensive

Definitive
Need very few of 
these
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Bootstrapping Inference Using Annotations

Pick the nodes which will 
label the most of the 
graph
   ~200 annotations label 60% of 
nodes

A small number of 
annotations is enough to get 
off the ground.
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Example Policy Violation
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Current state

• Used extensively to check data use policies inside 
Microsoft (in Bing, and several other services)
• Used to check GDPR compliance

S. Sen, S. Guha, A. Dutta, S. Rajamani, J. Tsai and J. 
Wing,  
“Bootstrapping Privacy Compliance in Big Data 
Systems,” In Proceedings of the 35th IEEE 
Symposium on Security & Privacy (Oakland), San 
Jose, CA, May 2014. 



Overview of this talk

• Part 1. Specifying and checking data use policies in 
online services
• Part 2. Specifying and checking data use in enclave 
programs
• Part 3. Thoughts on combining the above two ideas





Enclaves and TCB

Operating 
System

App

Hypervisor

App

TCB with 
enclaves

Hardware
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The 
operatin
g system 
and 
cloud 
framewo
rks are 
not in 
the TCB

• Adversary cannot observe or 
compromise code inside the 
enclaves. 
• Adversary can compromise 

all code outside the enclaves 
(including OS), can send and 
receive messages to 
enclaves, and create new 
enclaves with arbitrary code
• Adversary can cause 

interrupts and switch context 
out of the enclaves. 
• Difficulty: Defending against 

side-channels



World view
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• Every service contains trusted and 
untrusted components
• Data is encrypted in untrusted 

components
• Keys are available inside enclaves and 

data is in clear inside enclaves

• How do we know that code inside 
enclaves doesn’t leak secrets? Two 
approaches:
• Release source code to the user and let 

them do manual code review
• Perform automated verification of 

confidentiality of the code inside the 
enclave



Confidentiality
Defined as a “hyper-property” over traces 
(sequence of states): Adversary should not be 
able to infer secrets based on observations, 
no matter what actions it makes. 

Adversarial semantics: Allow adversary to 
havoc non-enclave memory after every 
program instruction and observe non-enclave 
memory after every program instruction

Confidentiality: For a pair of traces  and that 
potentially differ in the value of secrets, if the 
actions of the adversary in   and  are 
identical, then the observations of the 
adversary must be equivalent
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Verifying Confidentiality – Take one
void Reduce(BYTE *nameEnc, BYTE *valuesEnc, BYTE *outputEnc) {

KeyAesGcm *aesKey = ProvisionKey();

char name[KEY_SIZE];
aesKey->Decrypt(nameEnc, name, KEY_SIZE);

char valuesBuf[VALUES_SIZE];
aesKey->Decrypt(valuesEnc, valuesBuf, VALUES_SIZE);
StringList *values = (StringList*)valuesBuf;

long long usage = 0;
for (char *value = values->begin();

value != values->end(); value = values->next()) {
long lvalue = mystrtol(value, NULL, 10);
usage += lvalue;

}

char cleartext[BUF_SIZE];
sprintf(cleartext, "%s %lld", name, usage);
aesKey->Encrypt(cleartext, outputEnc, BUF_SIZE);

}

Check control flow integrity

Check that key is neither 
leaked nor overwritten

Check that secrets are encrypted 
before written to output buffer



Verifying Confidentiality• Check that keys are neither 
leaked not overwritten
• Check control flow integrity
• Check that secrets are 
encrypted with the 
appropriate key before output 
• This requires tracking which 

memory locations hold secrets 
• Either requires annotations or 

does not scale

• Check that enclave is created 
properly using provider 
instructions (eg. SGX)
• Requires modelling and analysing 

special instructions (eg. SGX 
instructions)

void Reduce(BYTE *nameEnc, BYTE *valuesEnc, BYTE *outputEnc) {
KeyAesGcm *aesKey = ProvisionKey();

char name[KEY_SIZE];
aesKey->Decrypt(nameEnc, name, KEY_SIZE);

char valuesBuf[VALUES_SIZE];
aesKey->Decrypt(valuesEnc, valuesBuf, VALUES_SIZE);
StringList *values = (StringList*)valuesBuf;

long long usage = 0;
for (char *value = values->begin();

value != values->end(); value = values->next()) {
long lvalue = mystrtol(value, NULL, 10);
usage += lvalue;

}

char cleartext[BUF_SIZE];
sprintf(cleartext, "%s %lld", name, usage);
aesKey->Encrypt(cleartext, outputEnc, BUF_SIZE);

}

Check control flow integrity

Check that key is neither 
leaked nor overwritten

Check that secrets are encrypted 
before written to output buffer

Rohit Sinha, Sriram Rajamani, Sanjit A. Seshia, and 
Kapil Vaswani, Moat: Verifying Confidentiality 
of Enclave Programs, in CCS 2015



Verifying Confidentiality – Take two

• Impose structure, and decompose the 
problem. 
• Link user application U with a small 
runtime L with a restricted API, which 
provides memory management and 
communication.
• Can now decompose the check to two 
parts:
• Check that user code U accesses L only 

through the APIs 
• Check that implementation of L does not leak 

secrets

User code (U)

Runtime 
Library (L)

Protected Memory

send, 
receive,
malloc, 
free

Non-enclave 
code

Unprotected Memory



Reducer example rewritten with 
library L

No need to worry about key 
management or special 
instructions (push these 
problems to L)

Entire address space of U 
can be considered as secret 
(avoids fine grained flow-
tracking)

Still need to check for 
stack overrun, control 
flow integrity, and 
memory accesses

void Reduce(Channel<String*>& channel)
{
     char *name = channel.recv<char*>(KEY_SIZE);

      StringList *values = (StringList*)
      channel.recv<StringList*>(VALUE_SIZE);

      long long usage = 0;
      for (char *value = values->begin();

value != values->end(); 
          value = values->next()) {

long lvalue = mystrtol(value, NULL, 10);
          usage += lvalue;
      }

       char cleartext[BUF_SIZE];
       sprintf(cleartext, BUF_SIZE, "%s %lld",      
           
                  name, usage);
       channel.send<char*>(cleartext);
}

User code (U)

Runtime 
Library (L)

Protected Memory

read, 
write,
malloc, 
free

Non-enclave 
code

Unprotected Memory



Information Release Confinement (IRC)

• A trace satisfies IRC, if every update to adversary-
observable state is either done by “call send” action 
from U, or from adversary-initiated actions.
• A user program U satisfies IRC if all traces of U satisfy 
IRC.
• IRC together with a suitable implementation of L 
guarantees confidentiality.



\Confidential: 
Verifier

User code U satisfies CFI-RW if for all 
procedures p within U, p satisfies the 
following properties:

1. No reads or writes to L’s memory. No 
writes to non-SIR memory

2. Any ret instruction within p uses the 
return address saved by the call into p

3. Any call instruction within p targets the 
starting address of a procedure in U, or to 
L’s API entry procedure.

4. Any (direct / indirect) jmp instruction 
targets a legal instruction within p

Modular verifier for CFI-RW

1. Processes each procedure p of U 
separately (at the level of machine 
code)

2. Instruments assertions for each store, 
call, ret, and jump instruction in p 

3. Generates a verification condition VC(p) 
which is discharged using Z3 (via 
Boogie) 

Insight: \Guard style compiler enables local 
and modular verification  (with compiler 
outside TCB),

Theorem: If all procedures p satisfy 
VC(p) then program U satisfies CFI-RW

CFI-RW 

Theorem: For any trace t, if t satisfies CFI-RW  and particular 
specifications on procedures in L, then t satisfies IRC



Verifying confidentiality

• Use a compiler that instruments memory accesses
• Verify that instrumented binary does not leak secrets

• Removes compiler and runtime from trusted computing base 

User 
application Compiler

Instrumente
d

user 
application 

(U)
Verified 

runtime (L)

Static
Verifier

Secrets

A Design and Verification Methodology for Secure Isolated Regions
Rohit Sinha, Manuel Costa, Akash Lal, Nuno Lopes, Sanjit Seshia, Sriram Rajamani, and Kapil Vaswani
ACM Conference on Programming Languages Design and Implementation (PLDI), June 2016

http://research.microsoft.com/apps/pubs/default.aspx?id=260602


Page Fault Side Channel

Idea: Can we build a 
compiler which ensures 
Page Access 
Obliviousness (PAO)?
i.e, sequence of pages 
accessed by the program 
are independent of 
secrets inside the 
enclave.

• Adversary in SGX can 
observe page addresses 
during page faults (at the 
granularity of pages, not 
locations)
• Question: can we plug this 

side channel using a 
compiler and verifier?





Page Access Obliviousness

Access to code and data (at the level of pages) should be 
independent of secrets



Formal Specification of Page Access Obliviousness



Compiler and Verifier for PAO



How the compiler works

• Prohibits data 
dependent loops
• Adds dummy 
data accesses, 
lays out code 
and data to 
create page 
access 
obliviousness

If:  Read (s),  Read(a[k]), 
Write (b[i]),
     Else: Read (s),  Write(c), 
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How the compiler works

• Prohibits data 
dependent loops
• Adds dummy 
data accesses, 
lays out code 
and data to 
create page 
access 
obliviousness

If:  Read (s),  Read(a[k]), 
Write (b[i]),
     Else: Read (s),  Write(c), 
        Read(a[k])



Performance

• Can be done with some overhead
• Overhead reduces due to MCMC optimization of dummy 
accesses

A Compiler and Verifier for Page Access Oblivious Compilation
Rohit Sinha, Sriram Rajamani, Sanjit Seshia
ACM Conference on Foundations Of Software Engineering (FSE), 2017

http://research.microsoft.com/apps/pubs/default.aspx?id=260602


Overview of this talk

• Part 1. Specifying and checking data use policies in 
online services
• Part 2. Specifying and checking data use in enclave 
programs
• Part 3. Thoughts on combining the above two ideas



Specifying data use policies in an adversarial setting

•Multiple data owners  
• Each owner has their own policy on who can access the 
data and what they can do with it
• Code that processes the data can be written using a 
variety of systems (Hadoop, Spark, Hive, etc)
• Goal: enforce that polices are adhered to about not 
only immediate users of data, but also derived uses of 
data

(ongoing collaboration with Ankush Desai, Pramod 
Subramanyan, Sanjit Seshia)

•  
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