
Specifying and Checking
Data Use Policies

Sriram Rajamani
Microsoft Research India

Access Control Policies

Picture credit: “Computer Security in the Real World”, B. Lampson
2004

Core Mechanisms:

authenticating principals—
determines who made a request;
principals usually are people, but they
also can be groups, channels, or
programs;

authorizing access—determines who
is trusted to do which operations on an
object;

auditing the guard’s decisions—
makes it possible to determine later
what happened and why.

Bell and LaPadula Model

• Each user subject and
information object
has a fixed security class –
labels

• Use the notation ≤ to indicate
dominance

• Simple Security (ss) property:
 the no read-up property
–A subject s has read access to

an object iff the class of the
subject C(s) is greater than or
equal to the class of the object
C(o)
– i.e. Subjects can read Objects iff

C(o) ≤ C(s)

Top Secret

Secret

Unclassified

Subjects
Top Secret

Secret

Unclassified

Objects
Read OK

Bell and LaPadula Model

• Each user subject and
information object
has a fixed security class –
labels

• Use the notation ≤ to indicate
dominance

• Simple Security (ss) property:
 the no read-up property
–A subject s has read access to

an object iff the class of the
subject C(s) is greater than or
equal to the class of the object
C(o)
– i.e. Subjects can read Objects iff

C(o) ≤ C(s)

Top Secret

Secret

Unclassified

Subjects

Top Secret

Secret

Unclassified

Objects

Read OK

Bell and LaPadula Model

• Each user subject and
information object
has a fixed security class –
labels

• Use the notation ≤ to
indicate dominance

• Simple Security (ss)
property:
 the no write-down property
–While a subject has read

access to object O, the subject
can only write to object P if
C(O) ≤ C (P)

Top Secret

Secret

Unclassified

Subjects
Top Secret

Secret

Unclassified

Objects
Write OK

Our interest: Data Use policies

• Once you have access, what are you allowed to do with
the data?
• These are called “use policies”

• Notion of purpose is important: In many cases we need to specify
usage for specific purposes such as “for fraud detection” or “for
advertising”
• Policies need to be specified independent of the program (since

policies can change depending on regulation changes, for
example)
• Policies need to be specified across implementations in many

programming languages

• This talk:
• Specifying and checking data use policies

Overview of this talk

• Part 1. Specifying and checking data use policies in
online services
• Part 2. Specifying and checking data use in enclave
programs
• Part 3. Thoughts on combining the above two ideas

8

Data Use Policies: Compliance
Challenge

10

• 77,000 jobs run each day
• 1.1 million unique lines of
code
• Significant Churn

•Manual audit infeasible

Legalese

S. Sen, S. Guha, A. Dutta, S. Rajamani, J. Tsai and J.
Wing,
“Bootstrapping Privacy Compliance in Big Data
Systems,” In Proceedings of the 35th IEEE
Symposium on Security & Privacy (Oakland), San
Jose, CA, May 2014.

Legalese

DENY Datatype IPAddress

 UseForPurpose Advertising

EXCEPT

 ALLOW

 Datatype IPAddress:Truncated

 ALLOW

 UseForPurpose AbuseDetect

 EXCEPT

 DENY Datatype
 IPAddress,
AccountInfo

12

We will not use full
IP Address for
Advertising. IP
Address may be used
for detecting abuse.
In such cases, it will
not be combined with
account
information.

Lattice of policy labels
• If IPAddress is
allowed, then
everything below
is allowed
• If
IPAddress:Truncat
ed is denied then
everything above
it is denied
• Type state is
modeled as
transition over
labels

More encodings for Bing policies

Another example

A Streamlined Audit Workflow

Legal Team
Crafts PolicyPrivacy
Champion
Interprets Policy

Developer
Writes Code

Audit Team
Verifies Compliance

Grok
Data inventory with policy labels

Legalease
A formal policy specification language

Encode Refine

Code analysis

Checker

Annotated
Code

Legalease
Policy

Potential violations

Fix code

Update Grok

16

Developer annotations

Map-Reduce
Programming
Systems

Scope, Hive, Dremel
Data in the form of Tables

Code Transforms Columns
to Columns

No Shared State
Limited Hidden Flows

Process
1

Dataset
A

Dataset
B

Dataset
C

Data Inventory
Annotate code + data
with policy data types.
Expensive!
We performs “type
inference”. That is
propagate labels via
data flow graph

18

Process
1

Dataset
A

Dataset
B

Dataset
C

Dataset
F

Dataset
E

Process
2

Process
3

Dataset
D

Process
5

Dataset
J

Process
6

Process
4

Dataset
H

Dataset
I

Dataset
G

NewAcc
t

Login

Check
Hijack

GeoIP

Check
Fraud

Reportin
g

Name Age
IPAddres

s
IDX

Hash Country

Timesta
mp Hash

IDX

IDX

Combine Noisy Sources

Carefully curated
regular expressions

Leverages developer
conventions

Significant Noise

Variable Name
Analysis

Developer
Annotations

Auditor
Verification

Expensive

Low Noise

Very Expensive

Definitive
Need very few of
these

19

Bootstrapping Inference Using Annotations

Pick the nodes which will
label the most of the
graph
 ~200 annotations label 60% of
nodes

A small number of
annotations is enough to get
off the ground.

20

% nodes labeled

%
 g

ra
p
h
 c

o
v
e
re

d

Dataset
F

Dataset
D

Process
5

Dataset
J

Process
6

Process
4

Dataset
H

Dataset
I

Dataset
G

GeoIP

Check
Fraud

Reportin
g

ID

ID

IPAddress is used for
reporting (advertising)

21

IPAddres
s

IPAddres
s

ID

Country

Example Policy Violation

Dataset
F

Dataset
D

Process
5

Dataset
J

Process
6

Process
4

Dataset
H

Dataset
I

Dataset
G

GeoIP

Check
Fraud

Reportin
g

IPAddres
s

ID

Country

IPAddres
s

ID

ID

State:
Truncate

d

IPAddress is truncated
before it is passed to
reporting (advertising) job

22

Dataset
F

IPAddres
s

Truncat
e

Example Fix

Current state

• Used extensively to check data use policies inside
Microsoft (in Bing, and several other services)
• Used to check GDPR compliance

S. Sen, S. Guha, A. Dutta, S. Rajamani, J. Tsai and J.
Wing,
“Bootstrapping Privacy Compliance in Big Data
Systems,” In Proceedings of the 35th IEEE
Symposium on Security & Privacy (Oakland), San
Jose, CA, May 2014.

Overview of this talk

• Part 1. Specifying and checking data use policies in
online services
• Part 2. Specifying and checking data use in enclave
programs
• Part 3. Thoughts on combining the above two ideas

Enclaves and TCB

Operating
System

App

Hypervisor

App

TCB with
enclaves

Hardware

26

The
operatin
g system
and
cloud
framewo
rks are
not in
the TCB

• Adversary cannot observe or
compromise code inside the
enclaves.
• Adversary can compromise

all code outside the enclaves
(including OS), can send and
receive messages to
enclaves, and create new
enclaves with arbitrary code
• Adversary can cause

interrupts and switch context
out of the enclaves.
• Difficulty: Defending against

side-channels

World view

T1

T2 T3

U1
U3

U4
U2

• Every service contains trusted and
untrusted components
• Data is encrypted in untrusted

components
• Keys are available inside enclaves and

data is in clear inside enclaves

• How do we know that code inside
enclaves doesn’t leak secrets? Two
approaches:
• Release source code to the user and let

them do manual code review
• Perform automated verification of

confidentiality of the code inside the
enclave

Confidentiality
Defined as a “hyper-property” over traces
(sequence of states): Adversary should not be
able to infer secrets based on observations,
no matter what actions it makes.

Adversarial semantics: Allow adversary to
havoc non-enclave memory after every
program instruction and observe non-enclave
memory after every program instruction

Confidentiality: For a pair of traces and that
potentially differ in the value of secrets, if the
actions of the adversary in and are
identical, then the observations of the
adversary must be equivalent

T1

T2 T3

U1
U3

U4
U2

Verifying Confidentiality – Take one
void Reduce(BYTE *nameEnc, BYTE *valuesEnc, BYTE *outputEnc) {

KeyAesGcm *aesKey = ProvisionKey();

char name[KEY_SIZE];
aesKey->Decrypt(nameEnc, name, KEY_SIZE);

char valuesBuf[VALUES_SIZE];
aesKey->Decrypt(valuesEnc, valuesBuf, VALUES_SIZE);
StringList *values = (StringList*)valuesBuf;

long long usage = 0;
for (char *value = values->begin();

value != values->end(); value = values->next()) {
long lvalue = mystrtol(value, NULL, 10);
usage += lvalue;

}

char cleartext[BUF_SIZE];
sprintf(cleartext, "%s %lld", name, usage);
aesKey->Encrypt(cleartext, outputEnc, BUF_SIZE);

}

Check control flow integrity

Check that key is neither
leaked nor overwritten

Check that secrets are encrypted
before written to output buffer

Verifying Confidentiality• Check that keys are neither
leaked not overwritten
• Check control flow integrity
• Check that secrets are
encrypted with the
appropriate key before output
• This requires tracking which

memory locations hold secrets
• Either requires annotations or

does not scale

• Check that enclave is created
properly using provider
instructions (eg. SGX)
• Requires modelling and analysing

special instructions (eg. SGX
instructions)

void Reduce(BYTE *nameEnc, BYTE *valuesEnc, BYTE *outputEnc) {
KeyAesGcm *aesKey = ProvisionKey();

char name[KEY_SIZE];
aesKey->Decrypt(nameEnc, name, KEY_SIZE);

char valuesBuf[VALUES_SIZE];
aesKey->Decrypt(valuesEnc, valuesBuf, VALUES_SIZE);
StringList *values = (StringList*)valuesBuf;

long long usage = 0;
for (char *value = values->begin();

value != values->end(); value = values->next()) {
long lvalue = mystrtol(value, NULL, 10);
usage += lvalue;

}

char cleartext[BUF_SIZE];
sprintf(cleartext, "%s %lld", name, usage);
aesKey->Encrypt(cleartext, outputEnc, BUF_SIZE);

}

Check control flow integrity

Check that key is neither
leaked nor overwritten

Check that secrets are encrypted
before written to output buffer

Rohit Sinha, Sriram Rajamani, Sanjit A. Seshia, and
Kapil Vaswani, Moat: Verifying Confidentiality
of Enclave Programs, in CCS 2015

Verifying Confidentiality – Take two

• Impose structure, and decompose the
problem.
• Link user application U with a small
runtime L with a restricted API, which
provides memory management and
communication.
• Can now decompose the check to two
parts:
• Check that user code U accesses L only

through the APIs
• Check that implementation of L does not leak

secrets

User code (U)

Runtime
Library (L)

Protected Memory

send,
receive,
malloc,
free

Non-enclave
code

Unprotected Memory

Reducer example rewritten with
library L

No need to worry about key
management or special
instructions (push these
problems to L)

Entire address space of U
can be considered as secret
(avoids fine grained flow-
tracking)

Still need to check for
stack overrun, control
flow integrity, and
memory accesses

void Reduce(Channel<String*>& channel)
{
 char *name = channel.recv<char*>(KEY_SIZE);

 StringList *values = (StringList*)
 channel.recv<StringList*>(VALUE_SIZE);

 long long usage = 0;
 for (char *value = values->begin();

value != values->end();
 value = values->next()) {

long lvalue = mystrtol(value, NULL, 10);
 usage += lvalue;
 }

 char cleartext[BUF_SIZE];
 sprintf(cleartext, BUF_SIZE, "%s %lld",

 name, usage);
 channel.send<char*>(cleartext);
}

User code (U)

Runtime
Library (L)

Protected Memory

read,
write,
malloc,
free

Non-enclave
code

Unprotected Memory

Information Release Confinement (IRC)

• A trace satisfies IRC, if every update to adversary-
observable state is either done by “call send” action
from U, or from adversary-initiated actions.
• A user program U satisfies IRC if all traces of U satisfy
IRC.
• IRC together with a suitable implementation of L
guarantees confidentiality.

\Confidential:
Verifier

User code U satisfies CFI-RW if for all
procedures p within U, p satisfies the
following properties:

1. No reads or writes to L’s memory. No
writes to non-SIR memory

2. Any ret instruction within p uses the
return address saved by the call into p

3. Any call instruction within p targets the
starting address of a procedure in U, or to
L’s API entry procedure.

4. Any (direct / indirect) jmp instruction
targets a legal instruction within p

Modular verifier for CFI-RW

1. Processes each procedure p of U
separately (at the level of machine
code)

2. Instruments assertions for each store,
call, ret, and jump instruction in p

3. Generates a verification condition VC(p)
which is discharged using Z3 (via
Boogie)

Insight: \Guard style compiler enables local
and modular verification (with compiler
outside TCB),

Theorem: If all procedures p satisfy
VC(p) then program U satisfies CFI-RW

CFI-RW

Theorem: For any trace t, if t satisfies CFI-RW and particular
specifications on procedures in L, then t satisfies IRC

Verifying confidentiality

• Use a compiler that instruments memory accesses
• Verify that instrumented binary does not leak secrets

• Removes compiler and runtime from trusted computing base

User
application Compiler

Instrumente
d

user
application

(U)
Verified

runtime (L)

Static
Verifier

Secrets

A Design and Verification Methodology for Secure Isolated Regions
Rohit Sinha, Manuel Costa, Akash Lal, Nuno Lopes, Sanjit Seshia, Sriram Rajamani, and Kapil Vaswani
ACM Conference on Programming Languages Design and Implementation (PLDI), June 2016

http://research.microsoft.com/apps/pubs/default.aspx?id=260602

Page Fault Side Channel

Idea: Can we build a
compiler which ensures
Page Access
Obliviousness (PAO)?
i.e, sequence of pages
accessed by the program
are independent of
secrets inside the
enclave.

• Adversary in SGX can
observe page addresses
during page faults (at the
granularity of pages, not
locations)
• Question: can we plug this

side channel using a
compiler and verifier?

Page Access Obliviousness

Access to code and data (at the level of pages) should be
independent of secrets

Formal Specification of Page Access Obliviousness

Compiler and Verifier for PAO

How the compiler works

• Prohibits data
dependent loops
• Adds dummy
data accesses,
lays out code
and data to
create page
access
obliviousness

If: Read (s), Read(a[k]),
Write (b[i]),
 Else: Read (s), Write(c),

How the compiler works

• Prohibits data
dependent loops
• Adds dummy
data accesses,
lays out code
and data to
create page
access
obliviousness

If: Read (s), Read(a[k]),
Write (b[i]),
 Write (c)Else: Read (s), Write(c),
 Read(a[k]), Write
(b[i])

How the compiler works

• Prohibits data
dependent loops
• Adds dummy
data accesses,
lays out code
and data to
create page
access
obliviousness

If: Read (s), Read(a[k]),
Write (b[i]),
 Else: Read (s), Write(c),
 Read(a[k])

Performance

• Can be done with some overhead
• Overhead reduces due to MCMC optimization of dummy
accesses

A Compiler and Verifier for Page Access Oblivious Compilation
Rohit Sinha, Sriram Rajamani, Sanjit Seshia
ACM Conference on Foundations Of Software Engineering (FSE), 2017

http://research.microsoft.com/apps/pubs/default.aspx?id=260602

Overview of this talk

• Part 1. Specifying and checking data use policies in
online services
• Part 2. Specifying and checking data use in enclave
programs
• Part 3. Thoughts on combining the above two ideas

Specifying data use policies in an adversarial setting

•Multiple data owners
• Each owner has their own policy on who can access the
data and what they can do with it
• Code that processes the data can be written using a
variety of systems (Hadoop, Spark, Hive, etc)
• Goal: enforce that polices are adhered to about not
only immediate users of data, but also derived uses of
data

(ongoing collaboration with Ankush Desai, Pramod
Subramanyan, Sanjit Seshia)

•

References
Bootstrapping Compliance in Big Data Systems
Shayak Sen, Saikat Guha, Anupam Datta, Sriram K.
Rajamani, Janice Y. Tsai, Jeannette M. Wing

IEEE Symposium on Security and Privacy (S&P), May
2014.

Moat: Verifying Confidentiality of Enclave Programs
Rohit Sinha, Sriram Rajamani, Sanjit A. Seshia, and Kapil
Vaswani

ACM Conference on Computer and
Communications Security (CCS), October
2015.

A Design and Verification Methodology for Secure Isol
ated Regions

Rohit Sinha, Manuel Costa, Akash Lal, Nuno Lopes, Sanjit
Seshia, Sriram Rajamani, and Kapil Vaswani

ACM Conference on Programming Languages Design
and Implementation (PLDI), June 2016.

A Compiler and Verifier for Page Access Oblivious
Compilaton
Rohit Sinha, Sriram Rajamani, Sanjit Seshia

ACM Conference on Foundations Of Software
Engineering (FSE), September 2017

• Data use policies in non-
adversarial settings can be
specified independent of
the code (e.g. Legalese)
• Data use in enclaves can be
verified at the binary level
• Ongoing: Combining the
two ideas to check data use
in adversarial settings

Summary

http://research.microsoft.com/apps/pubs/default.aspx?id=246524
http://research.microsoft.com/apps/pubs/default.aspx?id=255634
http://research.microsoft.com/apps/pubs/default.aspx?id=260602
http://research.microsoft.com/apps/pubs/default.aspx?id=260602
http://research.microsoft.com/apps/pubs/default.aspx?id=260602
http://research.microsoft.com/apps/pubs/default.aspx?id=260602

	Slide 1
	Access Control Policies
	Bell and LaPadula Model
	Bell and LaPadula Model
	Bell and LaPadula Model
	Our interest: Data Use policies
	Overview of this talk
	Slide 8
	Slide 9
	Data Use Policies: Compliance Challenge
	Legalese
	Legalese
	Lattice of policy labels
	More encodings for Bing policies
	Another example
	A Streamlined Audit Workflow
	Map-Reduce Programming Systems
	Slide 18
	Combine Noisy Sources
	Bootstrapping Inference Using Annotations
	Example Policy Violation
	Example Fix
	Current state
	Overview of this talk
	Slide 25
	Enclaves and TCB
	World view
	Slide 28
	Verifying Confidentiality – Take one
	Verifying Confidentiality
	Verifying Confidentiality – Take two
	Reducer example rewritten with library L
	Information Release Confinement (IRC)
	Confidential: Verifier
	Verifying confidentiality
	Page Fault Side Channel
	Slide 37
	Page Access Obliviousness
	Formal Specification of Page Access Obliviousness
	Compiler and Verifier for PAO
	How the compiler works
	How the compiler works
	How the compiler works
	Performance
	Overview of this talk
	Specifying data use policies in an adversarial setting
	References

