Specifying and Checking
Data Use Policies

Sriram Rajamani
Microsoft Research India

Access Control Policies

Authentication

Source

A
Do
operation

Request

Authorization

Core Mechanisms:

authenticating principals—

determines who made a request;
principals usually are people, but they
also can be groups, channels, or
programs;

authorizing access—determines who

is trusted to do which operations on an
object;

auditing the guard’s decisions—

makes it possible to determine later
what happened and why.

Picture credit: “Computer Security in the Real World”, B. Lampson

2004

Bell and LaPadula Model

« Each user subject and Su bjectS ObjECtS

iInformation object

has a fixed security class -
labels

 Use the notation = to indicate
dominance

* Simple Security (ss) property:
the no read-up property

— A subject s has read access to
an object iff the class of the
subject C(s) is greater than or
equal to the class of the object
C(o)

—i.e. Subjects can read Objects iff
C(o) = C(s)

Bell and LaPadula Model

 Each user subject and SUbjECtS ObjECtS

iInformation object
has a fixed security class - _
labels

 Use the notation = to indicate
dominance

* Simple Security (ss) property:
the no read-up property

— A subject s has read access to
an object iff the class of the
subject C(s) is greater than or
equal to the class of the object
C(o)

—i.e. Subjects can read Objects iff
C(o) = C(s)

Bell and LaPadula Model

« Each user subject and Su bjects ObjeCtS

iInformation object
has a fixed security class -
labels

 Use the notation = to
Indicate dominance

 Simple Security (ss)
property:
the no write-down property

—While a subject has read
access to object O, the subject
can only write to object P if
C(O) = C (P)

Our Interest: Data Use policies

* Once you have access, what are you allowed to do with
the data?

* These are called “use policies”

* Notion of purpose is important: In many cases we need to specify
usage for specific purposes such as “for fraud detection” or “for
advertising”

* Policies need to be specified independent of the program (since
policies can change depending on regulation changes, for
example)

* Policies need to be specified across implementations in many
programming languages

* This talk:

* Specifying and checking data use policies

Overview of this talk

* Part 1. Specifying and checking data use policies in
online services

* Part 2. Specifying and checking data use in enclave
programs

* Part 3. Thoughts on combining the above two ideas

SEARCH HISTORY WIS OUTLOOK.COM

HGTV drops show Crops out of sequel 'Pinocchio rex' Rapper hospitalized Jordan's comments

Bing Privacy Statement

é Print

This privacy statement applies to Bing websites, services, products and applications that collect data and display these terms. It does not apply to other Microsoft

products and services that do not link to the Bing Privacy Statement.

. Collecting Your Information

When you use Bing services, Microsoft may collect many kinds of information in order to operate effectively and provide
you the best products, services and experiences we can. We collect information when you register, sign in and use our sites
and services. We also may get information from other companies. We collect this information in a variety of ways,
including from web forms, technologies like cookies, web logging and software on your computer or ather device.

When you conduct a search, Microsoft collects the following:

e Search term and time and date of your search
e [P address, browser configuration and approximate location
e Any unigue identifiers contained in the cookies

We store search terms (and the cookie IDs associated with search terms) separately from any account information that
directly identifies the user, such as name, e-mail address, or phone numbers. We have technological safeguards in place
designed to prevent the unauthorized correlation of this data and we remove the entirety of the IP address after 6 months,
cookies and other cross session identifiers, after 18 months.

Bing provides search services to select partners and its users. Some examples include Yahoo! and Mokia. In order to
provide these services, Bing services receive certain search related information from these partners that may include date,
time, IP address, a unique identifier and other search related data.

1+Top of page Learn More €

Cookies

Collecting Your Information

Using Your Information

Sharing Your Information

Accessing Your Information

Microsoft Services Powered
by Bing

Bing Location Services

Children

Data Use Policies: Compliance

5 SEARCH HISTORY MORE MSMN OUTLOOK.COM Make Bing my homepage Shayak G
".'\x' rid R | T T "

' i*i‘e_ + 77,000 jobs run gach day
bbmg |_ Iz} million unique lines of

~\ code
' e Significant Churn

e« Manuahkaudit infeasible

Legalese

Policy Clause C
Deny Clause D

Allow Clause A

Attribute T
Value v

D|A

DENY 13 -..7,, EXCEPT 4,--.-4,,
'DENY 73 - .- T,

ALLOW 1y -..T,, EXCEPT D, ... D,,
ALLOW T3 ---T,,

(attribute-name) vy - - - vy
(attribute-value)

S. Sen, S. Guha, A. Dutta, S. Rajamani, J. Tsai and J.
Wing,

“Bootstrapping Privacy Compliance in Big Data
Systems,” In Proceedings of the 35th IEEE
Symposium on Security & Privacy (Oakland), San

Legalese

DENY Datatype IPAddress
UseForPurpose Advertising
EXCEPT
ALLOW
Datatype IPAddress:Truncated
ALLOW
UseForPurpose AbuseDetect
EXCEPT
DENY Datatype

IPAddress,
Accountinfo

We will not use full
IP Address for
Advertising. IP
Address may be used
for detecting abuse.
In such cases, it will
not be combined with
account
information.

12

Lattice of policy labels
o If IPAddress is

allowed, then
everything below
Is allowed

IPAddress o If

|IPAddress: Truncat

ed is denied then

IPAddress: Truncated everything above
It Is denied

* Type state is
modeled as

transition over
labels

More encodings for Bing policies

ALLOW
EXCEPT

DENY DataType IPaddress:Expired

DENY DataType Uniqueldentifier:Expired

DENY DataType SearchQuery, Pll InStore Store
DENY DataType Uniqueldentifier, PIl InStore Store

DENY DataType BBEPData UsefForPurpose Advertising

DENY DataType BBEPData, Pll InStore Store

DENY DataType BBEPData:Expired

DENY DataType UserProfile, Pll InStore Store

DENY Datalype Pll UseForPurpose Advertising

DENY DataType PIl InStore AdStore

DENY DataType SearchQuery UseForPurpose Sharing

EXCEPT
ALLOW DataType SearchQuery:Scrubbed

< “we remove the entirety of the IP address after 6 months”

4 “[we remove] cookies and other cross session identifiers, after 18 months”
< “We store search terms (and the cookie IDs associated with search terms)
separately from any account information that directly identifies the user, such
as name, e-mail address, or phone numbers.”

4 “we do not use any of the information collected through the Bing Bar
Experience Improvement Program to identify, contact or target advertising to
you”

q “we take steps to store [information collected through the Bing Bar
Experience Improvement Program] separately from any account information
we may have that directly identifies you, such as name, e-mail address, or
phone numbers™

4 “we delete the information collected through the Bing Bar Experience
Program at eighteen months.”

< “we store page views, clicks and search terms used for ad targeting separately
from contact information you may have provided or other data that directly
identifies you (such as your name, e-mail address, etc.).”

< “our advertising systems do not contain or use any information that can
personally and directly identify you (such as your name, email address and
phone number).”

< “Before we [share some search query data], we remove all unique identifiers
such as IP addresses and cookie IDs from the data.”

TABLE V
AN ENCODING OF PRIVACY PROMISES BY BING AS OF OCTOBER 2013

Another example

ALLOW
EXCEPT
DENY DataType Pll UseForPurpose Sharing

EXCEPT

ALLOW DataType PII:Optin
EXCEPT

ALLOW AccessByRole Affiliates
EXCEPT

ALLOW UseForPurpose Legal

DENY DataType DoubleClickData, PII
EXCEPT
ALLOW DataType DoubleClickData, Pll:Optin

< “We do not share personal information with companies, organiza-
tions and individuals outside of Google unless one of the following
circumstances apply:”

<4 “We require opt-in consent for the sharing of any sensitive
personal information.”

< “We provide personal information to our affiliates or other trusted
businesses or persons to process it for us”

<4 “We will share personal information [if necessary to] meet any
applicable law, regulation, legal process or enforceable governmen-
tal request.”

< “We will not combine DoubleClick cookie information with
personally identifiable information unless we have your opt-in
consent”

TABLE VI
AN ENCODING OF PRIVACY PROMISES BY GOOGLE AS OF OCTOBER 2013

A Streamlined Audit Workflow

Legal Team

C Legalease

A formal policy specification language

Interprews roicy
i_t_egalease
Annotated Policy
D Grok Code
- Data inventory with policy labels P>Checker

Audit Ieam

Verifies Compliance

Map-Reduce
y

Programming

Systems ‘
Dataset
Scope, Hive, Dremel e

Data in the form of Tables

Code Transforms Columns
to Columns

No Shared State

Limited Hidden Flows

IPAddres

Data Inventory ResV)ACT

Annotate code + data
with policy data types.
Expensive!

We performs “type
inference”. That is
propagate labels via
data flow graph

Timesta
mp

Theck"
Hijack

Combine Noisy Sources

Carefully curated

reqular expressions :
2 X Very Expensive

Leverages developer

conventions Expensive Definitive
L . Need very few of
Significant Noise Low Noise these

Variable Name Developer Auditor
Analysis Annotations Verification

Bootstrapping Inference Using Annotations

_O 100 I | ‘ e —

) . . .
§ 20 I — Pick the nodes which will
o | label the most of the

< graph

© | ~200 annotai®ns label 60% of
@) nodes

o\o 20 i

0 20 40 60 80 100

% nodes labeled

(@

\"
A small number of K
annotations is enough to get

off the ground.

20

Example Policy Violatiogez

|IPAddress is used for
reporting (advertising)

Example FiX IPAddres

IPAddress is truncated
before it is passed to
reporting (advertising) job

Current state

» Used extensively to check data use policies inside
Microsoft (in Bing, and several other services)

* Used to check GDPR compliance

S. Sen, S. Guha, A. Dutta, S. Rajamani, J. Tsai and J.
Wing,

“Bootstrapping Privacy Compliance in Big Data
Systems,” In Proceedings of the 35th IEEE
Svmbposium on Securitv & Privacv (Oakland) San

Overview of this talk

* Part 1. Specifying and checking data use policies in
online services

* Part 2. Specifying and checking data use in enclave
programs

* Part 3. Thoughts on combining the above two ideas

Why Azure Solutions Products Documentation Pricing Training Marketplace Partners Blog

Blog > Virtual Machines

Introducing Azure confidential

computing
Posted on 14 September, 2017 o 0 @

e Mark Russinovich, CTO, Microsoft Azure

Microsoft spends one billion dollars per year on cybersecurity and much of that goes to making Microsoft Azure the
most trusted cloud platform. From strict physical datacenter security, ensuring data privacy, encrypting data at rest
and in transit, novel uses of machine learning for threat detection, and the use of stringent operational software
development lifecycle controls, Azure represents the cutting edge of cloud security and privacy.

Today, I'm excited to announce that Microsoft Azure is the first cloud to offer new data security capabilities with a
collection of features and services called Azure confidential computing. Put simply, confidential computing offers a
protection that to date has been missing from public clouds, encryption of data while in use. This means that data
can be processed in the cloud with the assurance that it is always under customer control. The Azure team, along
with Microsoft Research, Intel, Windows, and our Developer Tools group, have been working on confidential
computing software and hardware technologies for over four years. The bottom of this post includes a list of
Microsoft Research papers related to confidential computing. Today we take that cutting edge one step further by
now making it available to customers via an Early Access program.

Data breaches are virtually daily news events, with attackers gaining access to personally identifiable information
(PI), financial data, and corporate intellectual property. While many breaches are the result of poorly configured
access control, most can be traced to data that is accessed while in use, either through administrative accounts, or
by leveraging compromised keys to access encrypted data. Despite advanced cybersecurity controls and mitigations,
some customers are reluctant to move their most sensitive data to the cloud for fear of attacks against their data
when it is in-use. With confidential computing, they can move the data to Azure knowing that it is safe not only at
rest, but also in use from the following threats:

+ Malicious insiders with administrative privilege or direct access to hardware on which it is being processed
» Hackers and malware that exploit bugs in the operating system, application, or hypervisor

+ Third parties accessing it without their consent

Enclaves and TCB

» Adversary cannot observe or
compromise code inside the
enclaves.

 Adversary can compromise
all code outside the enclaves
(including OS), can send and
receive messages to
enclaves, and create new
enclaves with arbitrary code

 Adversary can cause
Interrupts and switch context
out of the enclaves.

 Difficulty: Defending against

cide_.channalc

operatin
g system
and
cloud
framewo
rks are
not in
the TCB

TCB with

Hvnervisor |
‘ :
1 Hardware |

Skylake

World view

* Every service contains trusted and
untrusted components

e Data is encrypted in untrusted
components

» Keys are available inside enclaves and
data is in clear inside enclaves

e How do we know that code inside
enclaves doesn’t leak secrets? Two
approaches:

 Release source code to the user and let
them do manual code review

 Perform automated verification of
confidentiality of the code inside the %
enclave

Confidentiality

PRiined s hYReRP TR Baces
(seq U@rﬁtf%ec@fsgy gxd@?fg?@ﬁma deot be
@k@il@ to i rsé@@tevéa bages onebsgivadions,
nesmatterswiabactionskiésmakes.

Ayersanialssemaimtd callA ewvacveysanyatec
haveemtivencaveynaeamene aftgbeneny
pneignanonrstouttienva mboksetye noarenglave
raieen evgrafbeo@eerynpirogtiam instruction

Canfiidentiiiyyt&os papadf obteacesnang ttiat
p:mt@ntlal fﬁfemlmmelwaluésetrseznétbelfthe
actions ofttiecadarspspiy i aand, areidentical,
|H"é?ﬁtib§l0ﬂﬁéwah@rbt§§éh¢aﬁbfﬁ§@ffytﬁél st be
FNSRFEAY must be equivalent

Verifying Confidentiality - Take one

void Reduce(BYTE *nameEnc, BYTE *valuestEnc, BYTE *outputEnc) {
KeyAesGcm *aesKey = ProvisionKey();

char name[KEY_SIZE]; Check that key is neither
aesKey->Decrypt(nameEnc, name, KEY_SIZE); < — leaked nor overwritten

char valuesBuf[VALUES_SIZE],
aesKey->Decrypt(valuesénc, valuesBuf, VALUES_SIZE);
StringList *values = (StringList*)valuesBuf;

long long usage = 0;

for (char *value = values->begin();
value !'= values->end(); value = values->next()) {
long lvalue = mystrtol(value, NULL, 10);
usage += lvalue;

}

char cleartext[BUF_SIZE]; _ .
sprintf(cleartext, "%s %11d", name, usage); e Check control flow integrity

aesKey->Encrypt(cleartext, outputEnc, BUF_SIZE); _ Check that secrets are encrypted
} before written to output buffer

Verlfyl ng Conﬁdenti,QLi;cCX that keys are neither

leaked not overwritten
* Check control flow integrity

- * Check that t
aesKey->Decrypt(nameEnc, name, KEY_SIZE); _ Egi;ﬁt:s:gsgrjr?gg?er eC a S.ec re S a re
e ey oateestne atuestur, vaLuES Size); encrypted with the

StringlList *values = (StringList*)valuesBuf;

appropriate key before output

for (char *value = values->begin();
value !'= values->end(); value = values->next()) {

Lono:uaLie + myetrcok (velue, MULL, 10) * This requires tracking which

usage += lvalue;

: memory locations hold secrets

char cleartext[BUF_SIZE]; . .
sprintf(cleartext, "%s %11d", name, usage) _ Check control flow integrity

) aesKey->Encrypt(cleartext, outputEr’m, BUF_éIZE); === gggcrlé t\xfittseictrgt;uat;euir&r%g:ed 4 E ith e r req u i res a n n Otati O n S O r
does not scale

* Check that enclave iIs created

Rohit Sinha, Sriram Rajamani, Sanjit A. Seshia, and ProperIY using prOV|der
Kapil Vaswani, Moat: Verifying Confidentiality Instructions (eg : SGX)

of Enclave Programs, in CC5 2015 * Requires modelling and analysing
special instructions (eqg. SGX

void Reduce(BYTE *nameEnc, BYTE *valuestEnc, BYTE *outputEnc) {
KeyAesGcm *aesKey = ProvisionKey();

Verifying Confidentiality - Take two

Protected Memory * Impose structure, and decompose the
problem.
Jeer cogiz (L) * Link user application U with a small
runtime L with a restricted API, which
send, provides memory management and
receive, communication.
uRbLf-'é?”"“ Can now decompose the check to two
parts:
* Check that user code U accesses L only
through the APIs
Unprotected Memory * Check that implementation of L does not leak

secrets

Reducer example rewritten with

Protected Memory

User code (U)

RUlcEl e
Likiissy (L)

void Reduce(Channel<String*>& channel)

{

Non-enclave
code

Unprotected Memorn

Y}

char *name = channel.recv<char*>(KEY_SIZE),

StringList *values = (StringList*)

C

hannel.recv<StringList*>(VALUE_SIZE);

long long usage = 0;
for (char *value = values->begin();

value !'= values->end();

value = values->next()) {

long lvalue = mystrtol(value, NULL, 10);

}

usage += lvalue;
char cleartext[BUF_SIZE];
sprintf(cleartext, BUF_SIZE, "%s %11d",

name, usage);
channel.send<char*>(cleartext);

No need to worry about key
Mmanagement or special
instructions (push these
problems to L)

Entire address space of U
can be considered as secret
(avoids fine grained flow-
tracking)

Still need to check for
stack overrun, control
flow integrity, and
memory accesses

Information Release Confinement (IRC)

» A trace satisfies IRC, if every update to adversary-
observable state is either done by “call send” action
from U, or from adversary-initiated actions.

* A user program U satisfies IRC if all traces of U satisfy
IRC.

* |RC together with a suitable implementation of L
guarantees confidentiality.

\Confidential:

CFI-RW Verifier

User code U satisfies CFI-RW if for all Modular verifier for CFI-RW

proce;lures P within U, psatisties the 1. Processes each procedure p of U

following properties: separately (at the level of machine
1. No reads or writes to L's memory. No code)

writes to non-SIR memory

2. Any ret instruction within p uses the 2. Instruments assertions for each store,

return address saved by the call into p call, ret, and jump instruction in p

3. Any call instruction within p targets the 3. Generates a verification condition VC(p)
starting address of a procedure in U, or to which is discharged using Z3 (via
L’s APl entry procedure. Boogie)

4. Any (direct / indirect) jmp instruction

targets a legal instruction within p Insight: \Guard style compiler enables local

and modular verification (with compiler
outside TCB),

Theorem: For any trace t, if t satisfideogycmyy I6ald pererdyses p satisfy
specifications on procedures in L, théa(pL&bpmiesearam U satisfies CFI-RW

Verifying confidentiality

» Use a compiler that instruments memory accesses

 Verify that instrumented binary does not leak secrets
« Removes compiler and runtime from trusted computmg ba

application Soplication Verifier

Verified
runtime (L)
Secrets%f‘
Al

A Design and Verification Methodology for Secure Isolated Regions
Rohit Sinha, Manuel Costa, Akash Lal, Nuno Lopes, Sanjit Seshia, Sriram Rajamani, and Kapil Vaswani

ACM Conference on Programming Languages Design and Implementation (PLDI), June 2016

http://research.microsoft.com/apps/pubs/default.aspx?id=260602

Page Fault Side Channel

 Adversary in SGX can
observe page addresses
during page faults (at the
granularity of pages, not
locations)

* Question: can we plug this
side channel using a
compiler and verifier?

ldea: Can we build a
compiler which ensures
Page Access
Obliviousness (PAQO)?

l.e, sequence of pages
accessed by the program
are independent of
secrets inside the
enclave.

Page Faults

Revea

Attacker learns page-level accesses
Controlled Channel Attacks [XBP1l5]

void decisionTreeEvaluate(input)

{

while (decision not yet made) {

if (input[feature] >

tree[index].threshold) {

index := tree[index].left;
} else {
index := tree[index].right;

}

Your Secrets

Criginal

Recovered

input[f] >
threshold

Page Access Obliviousness

Access to code and data (at the level of pages) should be
iIndependent of secrets

Formal Specification of Page Access Obliviousness

Attacker Observes:

e page containing current instruction: Execute(rip mod 4096)
* page containing addresses accessed by current instruction:

mov regd [rega]: Read(rega mod 4096)
mov [rega] regd: Write(rega mod 4096)
ret: Read(rsp mod 4096)

Formulated as non-interference: any pair of executions
with the same attacker operations must have the same
observations i.e. observations independent of secrets

Compiler and Verifier for PAO

' User Code } | .
: ; + 5 Runtime —

..................

.............

.............

How the compiler works

if (s) {
e Prohibits data b[i] := alkl]; If: Read (s), Read(a[k]),
} else { Write (b[i]),

dependent loops

* Adds dummy)
data accesses,
lays out code
and data to
create page
access
obliviousness

cC := 0; Else: Read (s), Write(c),

How the compiler works

if (s) {
+ Prohibits data NPCTOIP I iy
else ’

dependent |OOpS c := 0; ElsdRESd), write(c),
e Adds dummy) _ Read(alk]), Write

data accesses, (bl

lays out code

and data to

create page

access

obliviousness

How the compiler works

if (s) {
e Prohibits data b[i] := alkl]; 1If: Read (s), Read(a[k]),
dependent loops } else { Write (b[1]),
cC := 0; Else: Read (s), Write(c),
 Adds dummy } Read(alk])
data accesses,
lays out code
and data to £ (s) { [
1 S
create page L
access
obliviousness + else {
—
Y

Performance

B Runtime M Runtime (no MCMC) ™ Page Accesses M Page Accesses (no MCMC)

g B

(=]
(=]

Overhead (%)

o
(=]

k-means Decision Tree SVM CNN IDCT (1D) IDCT (2D) AES

e Can be done with some overhead

* Overhead reduces due to MCMC optimization of dummy
accesses

A Compiler and Verifier for Page Access Oblivious Compilation
Rohit Sinha, Sriram Rajamani, Sanjit Seshia

http://research.microsoft.com/apps/pubs/default.aspx?id=260602

Overview of this talk

* Part 1. Specifying and checking data use policies in
online services

* Part 2. Specifying and checking data use in enclave
programs

* Part 3. Thoughts on combining the above two ideas

Specifying data use policies in an adversarial setting

Mulbipledata muners, o,, .

*.EaEh &W@ﬁﬁ&%ﬁéﬁh@%n%rﬂcpmi%g,Qrbwm,gcpggh accesskhe
dafa andwhabinexeanaa with it

*ode thatriacesses e datbeanhe wWiH§en Hsame
v@kietys of sysliemstbladeomcSpark, Hive, etc)

*(i20I: @ndarcenthptipedisesadneradespd toa not
amly donedmtefusessol detalcbutdalses deduted uses of

(g%éing collaboration with Ankush Desai, Pramod Subramanyan,
(eagofrghenllaboration with Ankush Desai, Pramod

Subramanyan, Sanjit Seshia)

Summary

e Data use policies in non-
adversarial settings can be
specified independent of
the code (e.qg. Legalese)

 Data use in enclaves can be
verified at the binary level

 Ongoing: Combining the
two ideas to check data use
In adversarial settings

References

Bootstrapping Compliance in Big Data Systems
Shayak Sen, Saikat Guha, Anupam Datta, Sriram K.
Rajamani, Janice Y. Tsai, Jeannette M. Wing

IEEE Symposium on Security and Privacy (S&P), May
2014.

Moat: Verifying Confidentiality of Enclave Programs
Rohit Sinha, Sriram Rajamani, Sanjit A. Seshia, and Kapil

Vaswani
ACM Conference on Computer and
Communications Security (CCS), October

2015.

A Design and Verification Methodology for Secure Isol
ated Regions

Rohit Sinha, Manuel Costa, Akash Lal, Nuno Lopes, Sanjit
Seshia, Sriram Rajamani, and Kapil Vaswani

ACM Conference on Programming Languages Design
and Implementation (PLDI), June 2016.

A Compiler and Verifier for Page Access Oblivious
Compilaton

Rohit Sinha, Sriram Rajamani, Sanjit Seshia

http://research.microsoft.com/apps/pubs/default.aspx?id=246524
http://research.microsoft.com/apps/pubs/default.aspx?id=255634
http://research.microsoft.com/apps/pubs/default.aspx?id=260602
http://research.microsoft.com/apps/pubs/default.aspx?id=260602
http://research.microsoft.com/apps/pubs/default.aspx?id=260602
http://research.microsoft.com/apps/pubs/default.aspx?id=260602

	Slide 1
	Access Control Policies
	Bell and LaPadula Model
	Bell and LaPadula Model
	Bell and LaPadula Model
	Our interest: Data Use policies
	Overview of this talk
	Slide 8
	Slide 9
	Data Use Policies: Compliance Challenge
	Legalese
	Legalese
	Lattice of policy labels
	More encodings for Bing policies
	Another example
	A Streamlined Audit Workflow
	Map-Reduce Programming Systems
	Slide 18
	Combine Noisy Sources
	Bootstrapping Inference Using Annotations
	Example Policy Violation
	Example Fix
	Current state
	Overview of this talk
	Slide 25
	Enclaves and TCB
	World view
	Slide 28
	Verifying Confidentiality – Take one
	Verifying Confidentiality
	Verifying Confidentiality – Take two
	Reducer example rewritten with library L
	Information Release Confinement (IRC)
	Confidential: Verifier
	Verifying confidentiality
	Page Fault Side Channel
	Slide 37
	Page Access Obliviousness
	Formal Specification of Page Access Obliviousness
	Compiler and Verifier for PAO
	How the compiler works
	How the compiler works
	How the compiler works
	Performance
	Overview of this talk
	Specifying data use policies in an adversarial setting
	References

