On The Security of Blockchain Consensus Protocols Prateek Saxena Asst. Professor of Computer Science

School of Computing

The Origin of Blockchains

Blockchains: Origin & Today

Application: Self-regulating Currency

Application: Self-regulating Currency

From Payments To General-Purpose Computing

Ethlance	hlance Participate in Ethlance's governance processes: Introducing the districtOx Network How it works						
	For Sale	Siring Gen 0 All Kittie	es				
	Q Search			ETH PRICE: \$600.23 USD GAS PRICE: 15 GWEI ①	EXCHANGE HELP	NEW WALLET	UNLOCK WALLET
	S F	MARKETS 🔳 ★ Only Se	AURA / ETH AURA Contract: 0xcdc	fc0f6 Last Price 24hr Volume: 1	en LEARN MORE 24hr H 0.00033199 26565.61894113518482	24hr L 24 0.00031301 + 1425 AURA / 40.984016	Hr Change 1.27263483% 58699487643
		☆ Coin Price Vol Coin ☆ NPXS 0.00001302 4792.14 - ☆ PAI 0.0002724 1832.89 - ☆ HOT 0.0000161 1437.45 - ☆ REM 0.0000340 928.18 4	Chg Name 1.31% Pundi X 9.73% PCHAIN 2.31% HoloToken +4.52% REMME 11.52% Cuuchain	CHART QUICK BALANCES 5 15 30 1h 2h 60, IDEX 0 0 0000032517	BENEFITS 6h 1h :		🛧 🎓 💽
Over 5 million decentralized							
			apps				
	- Ar	X NEXO 0.0002/119 456.52 X SNTR 0.00000039 436.72 + X EXC 0.00126515 426.54 +	8:97% Nexo +2.46% SilentNotary +3.23% Eximchain Volume (false, 20)	© ☞ ☆ 4.29 n/a		11 11	- 200.
		☆ BKX 0.0004698 376.68 ☆ PMNT 0.0000807 362.02 + ☆ MAN 0.00124550 294.63 -	3.18% BANKEX +93.54% Paymon 1.49% MATRIX A 5y 1y	6 6 3m 1m 5d 1d	7	8 17:22:15 (UTC-4) %	0. 18:00 log auto ☆

Outline

- Motivation & The Consensus Problem
- The Power of Simplicity
- Challenges & Recent Advantages
- Future Directions

Why Might We Care?

A New Model of Trust

- Basis For Trust In Prior Systems:
 - Blind Faith / Assumption
 - Reputation
 - Incentives
 - Regulation
- A New Model: Self-regulation
 - Anyone can connect and audit the operations
 - (Extremely) High Availability
 - No permission needed, no centralized coordinator

A New Model of Trust BANK Alice Bob **Public** Ledger

- Prevent censorship of transactions (Fairness)
- Provide Availability of infrastructure (Resilience)

A New Model of Trust

- A Shift in the Design Philosophy:
 - Security First, Performance Later!
 - Once Deployed, no upgrades

The DAO Hack—Stolen \$50M & The Hard Fork.

Bitcoin Gold (BTG): A New Hard Fork to Prevent 51% Attack

Published 6 months agoon June 7, 2018 By Maja Rogic

Verge Cryptocurrency Network Falls Victim to Same Attack Even After Hard-Fork

By Catalin Cimpanu

🛗 May 24, 2018 🛛 💓 12:15 AM

A New Perspective On Classical Problem

- Byzantine Agreement Problem (Lamport et al. 82):
 - A fraction f out of n of parties malicious, i.e.,
 Byzantine
 Goals: Ensure hohest parties agree on a valid

Coordinated Attack Leading to Victory

Uncoordinated Attack Leading to Defeat

Blockchain Consensus 🛛 BA

The Commercial Relevance

Total Market Capitalization (Excluding Bitcoin)

The Blockchain Consensus Problem

No Centralized Trust

Blockchains: A network of "miners"

Permissionless

- Anyone can join / leave without centralized co-ordination

<u>This Photo</u> by Unknown Author is licensed under <u>CC BY SA</u> <u>This Photo</u> by Unknown Author is licensed under <u>CC BY</u>

Goals of A Blockchain

Goals of A Blockchain

• A continuous process... 1 block every

- Transactions are totally ordered in "blocks"
- Blocks are totally <u>ordered in time</u>
 Anyone can verify their order

Key Challenge: Agreement over Transaction Ordering

Blockchain Consensus Problem

- Assumptions:
 - Users have no pre-established identities, anyone joins anytime
 - A majority of miners are honest!
 - Network is synchronous (Blocks transmitted within some delay)
- Security Properties:
 - Stability: A block once confirmed can't be changed
 - Agreement: Miners order the blocks same way
 - Fairness: Your confirmed blocks are proportional to the computational power you have connected
- Performance Goals:
 - Throughput: Lots of transactions per unit time
 - Latency: Short timeframe to confirm a transaction
 - Decentralization: Large # of miners proposing transaction blocks

The Power Of Simplicity

Classical Byzantine Agreement (BA)

- Byzantine Agreement Problem (Lamport et al. 82):
 - A set of parties {P1, P2, Pn} have inputs
 - A fraction **f** out of **n** are malicious, i.e., Byzantine
 - Goals:
 - Ensure that all honest parties **agree on the same** value
 - The agreed value is **valid**, i.e. input of some honest node

Coordinated Attack Leading to Victory

Uncoordinated Attack Leading to Defeat

Repurposing BA Protocols?

- Yes, repeated rounds of BA
- Agree on 1 block per round
- Honest miners sign that block with round id.

Challenge: Participants must be <u>known a-priori</u>
 – Chicken-n-egg: Agreeing on participants is itself...

Caveat: BA Protocols Are Complex

- A philosophical viewpoint – Simplicity mattes in practice
- Recent Design Flaws:
 - Zyzzyva [SOSP'07] is a landmark fast BFT protocol
 - A flaw found 10 years later [Abraham et al. arxiv2017]
- Blockchain Consensus is a <u>simpler</u> BA solution
 - Mild assumption: parties have equal computation power

Bitcoin's Solution: Nakamoto Consensus Protocol

- Miners keep a local copy of the blockchain
- Miners solve a computational Proof-of-Work puzzle:

- Successful miners (usually <u>one</u>) broadcast solution
- Miners check the received solutions, and if valid:
 Extend their chain with that block
- Confirm block on the <u>longest chain</u> after it is kdeep
 - Bitcoin proposes k = 6

Computational Puzzles as a Sybil Defense

Puzzle X: Compute "s" such that

H(s || last_block_hash || new_block) < d

- "d" is the number of leading zeros desired
- "d" adjustable, based on the mining power (last block interval)
- Consumes power to solve, but anyone can verify

10:30 AM April 1, 2015 10:40 AM April 1, 2015 10:50 AM April 1, 2015

Nakamoto Consensus: Overview

PoW solver (block founder) is a **leader**. Everyone accepts his solution, if valid.

 We didn't know how many computers connected, yet we elected one block!

Nakamoto Consensus: Overview

(Taking comp

Why Simplicity Matters...

- Admits analysis and proofs
- Safety & Liveness holds for Nakamoto
 - Certain large parameter values must be chosen
- Rough outline of proof:
 - Define Epoch as one "block propagation delay" (BPD)
 - Count "Good" vs. "Bad" events
 - Good: A single block is mined in a epoch by honest miners
 - Bad: More than one block mined in an epoch
 - Bad: Malicious miner mines one block more than honest
 - Show that union of all "bad" events happen with negligible probability in "k"

Carefully Established Results

hs from Kiffer, Rajaraman, Shelat - CCS'18. (Also see EuroCrypt'15, TACT'17)

At high block rate, forks are likely...

hs from Kiffer, Rajaraman, Shelat - CCS'18. (Also see EuroCrypt'15, TACT'17)

Research Challenges (I)

Security vs. Performance

- 2-4 Kilobytes / second
- 6-12 TXs per second
- 3-60 minutes latency
- Support limited computations
- Outages and Unavailability
- A cryptoKitties app clogged the entire

Demand from Practice: 1,200°^{ck}50,000 TXs/s

Security vs. Performance

- Goal: Show <u>all</u> properties simultaneously:
 - Near-optimal Throughput
 - Scale up to a constant fraction of available bandwidth
 - Near-optimal Resilience
 - Byzantine adversary with power fraction f < 1/2

Decentralization

Many block proposers per second, difficult to attack/bribe

- Low Confirmation Latency

 "The Buy Coffee" Problem: Latency below 15 epochs

Security vs. Performance: State-of-the-art

Approach	Resilie nce	Throughp ut	Decentraliz ation	Latency
Nakamoto with reduced block	$\label{eq:linear_state} \begin{array}{ccc} \mbox{Approximation} & \mbox{Residence} & \mbox{Houghput} & \mbox{Detertalization} & \mbox{Lettery} \\ \mbox{Nakamoto with heduced} & \end{tabular} < \frac{1}{5} & \mbox{Low} & \mbox{Medium} & \mbox{Good} \\ \mbox{Nakamoto with harge} & \end{tabular} & \end{tabular} < \mbox{Low} & \mbox{Medium} \\ \mbox{Modum} & \mbox{Idox} & \mbox{Idox} & \mbox{Residence} \\ \mbox{Algebraid} (with BA) & \end{tabular} & \end{tabular} & \mbox{Low} & \mbox{Good} \\ \mbox{Residence} & \mbox{Residence} & \mbox{Residence} \\ \mbox{Algebraid} (with BA) & \end{tabular} & \end{tabular} & \mbox{Low} & \mbox{Residence} \\ \mbox{Residence} & \mbox{Residence} & \mbox{Residence} & \mbox{Residence} \\ \mbox{Algebraid} (with BA) & \end{tabular} & \end{tabular} & \mbox{Residence} & Resid$	Low	Medium	Good
intervals	$\label{eq:sharding (with BA)} \begin{array}{ll} r < \frac{1}{3} & \mbox{High} & \mbox{Medium} & \mbox{Good} \\ \mbox{[CCS16, SAP18,CCS18]} & r < \frac{1}{3} & \mbox{High} & \mbox{Medium} \\ \mbox{Parallel Chains} & r < \frac{1}{2} & \mbox{High} & \mbox{Good} & \mbox{Medium} \\ \mbox{[anis/18]} & \mbox{Interval} & Inte$			
Nakamoto with large blocks	$\label{eq:resonance} \begin{array}{ccc} \mbox{Rolline} & Roll$	High	Low	Mediu m
AlgoRand (with BA) [SOSP'17]	Approx1 Resitive Procepted Percentization Lawy Nakamoto with healued / < 1/2	High	Low	Good
Sharding (with BA)	Approch Relieve Thoughput Detectualization Latency Nakamoto with reduced $f < \frac{1}{3}$ Low Medium Good block intervals $f < \frac{1}{2}$ High Low Medium blocks $f < \frac{1}{2}$ High Low Medium blocks $f < \frac{1}{2}$ High Low Medium	High	Medium	Good
[CCS'16, S&P'18,CCS'18]	$\begin{array}{c} $	nor	30 4	10
Parallel CJU pro[arxiv'18]			secs.	mins

Our Solution: Blockchain Sharding

Elastico - CCS'16 (Also see Omniledger - Oakland'18,

Commercialized as the Zilliqa blockchain

OHIE: Composing Parallel Chains

Nakamoto Chain 0

Nakamoto Chain 1

Nakamoto Chain 2

Nakamoto Chain 1000

. . . .

- Near-oppitional-theopologhput
- High Restartion $\mathcal{G} = \frac{1}{2}$
- High descentratization
 - -20×0veffrbrbrbrbructions
 - constructions Confirmation Latency:
- Confirmation Latency:
 - 2x of Nakamoto Modular and Simple
- Modular and Simple Full proofs of safety and liveness Full proofs of safety and
 - liveness

<u>OHIE: Blockchain Scaling Made Simple - Yu e</u>

Research Challenges (II)

Defining the Consistency Model

· If a smartoget action of the interior returned? **Eventual** w(x)w(x)r(x)r(x)Block 45 Block 46 Block 47 Block 48 Monotonic w(x)w(x)r(x)r(x)Block 45 Block 46 Block 47 Block 48 Strong w(x)w(x)r(x)r(x)Block 45 Block 46 Block 47 Block 48

Do developers understand consistency?

'\$300m in cryptocurrency' accidentally lost forever due to bug

Etherdice is down for maintenance. We are having troubles with our smart contract and will probably need to invoke

Over 34,000 Ethereum Smart Contracts Found To Be Vulnerable

Blockchainist. Former poker pro. Jul 21, 2017 · 16 min read

A hacker stole \$31M of Ether—how it happened, and what it means for Ethereum

Transaction Ordering Inconsistencies

```
1 contract MarketPlace{
   uint public price;
  uint public stock;
  1...1
  function updatePrice(uint _price){
      if (msg.sender == owner)
        price = _price;
8
9 function buy (uint quant) returns (uint){
      if (msg.value < quant * price || quant > stock)
10
11
        throw:
12
      stock -= quant;
13
      1...1
```

Two transactions, one to updatePrice () and one to buy(), will have different results based on the order in which they're present in the

- Oyente: Detected Bugs Ind Existing Smart Contracts
 - Run with **19366** contracts, **3056** due to re-ordering TXs
 - 30 mins timeout per contract

Oyente - CCS'10

Towards Efficient Detection Techniques

- Multi-Transaction Vulnerabilities
 - Run with 970,898 contracts
 - 10 seconds timeout per contract

	#Candidates	Candidates		% of
Category	flagged	without	#Validated	true
	(distinct)	source		positives
Prodigal	1504 (438)	1487	1253	97
Suicidal	1495 (403)	1487	1423	99
Greedy	31,201 (<i>1524</i>)	31,045	1083	69
Total	34,200 (2,365)	34,019	3,759	89

Over 34,000 Ethereum Smart Contracts Found To Be Vulnerable

MAIAN - Finding The Greedy, Prodigal and Suicidal Contracts - ACSA

More Challenges & Future Directions

- Bitcoin consumes more electricity than Ireland!
 - Switch to non-computational Sybil defenses (PoS)
 - Fundamental tradeoffs between PoW vs PoS?
- Moving Computationally Intensive Tasks Off-chain
 - Trusting off-chain computation?

Takeaways

- Open Decentralized Systems are a new area...
 No centralized trust assumptions, permissionless
- The Power of Simplicity

 Helps the practitioner and in establishing confidence via proofs
- Many advances trading off between ideal properties

 Yet to see an optimal solution! (Low latency, high decentralization)
- Need for new models and drawing new connections:
 - Consistency properties
 - Sybil resistance mechanisms
 - Incentive mechanism design

Thank you!