
Secure Multi-party Computation

NISHANTH CHANDRAN
DIVYA GUPTA

1 The views expressed here are solely those of the author in his private capacity and do not in any way represent the views of Microsoft, or any other entity of Microsoft.

Machine Learning on Health
Records

2

Patient Records
DB1

Patient Records
DB2

Can hospitals compute
joint

statistics on their
databases

without revealing patient
information to one

another?

Private Set Intersection

3

CustList1 CustList2

• Realty companies find list of
customers who have double listed

• Can they do so without revealing
individual customer names
to each other?

A way to solve this problem

4

Patient Records
DB1

Patient Records
DB2

Trusted Third Party

DB1
DB2

Statistics Statistics

Can trust in other
parties be
completely
removed?

Secure Two/Multi-party
Computation (MPC)
[Yao86, GMW87, BGW88, CCD88]

5

𝑃1

𝑃2

𝑃3 𝑃4

𝑃5

𝑥1

𝑥2

𝑥3
𝑥4

𝑥5

• n parties, t corruptions

• has input

• Goal is to compute

• Correctness: Execute protocol to
compute correctly

• Security: Parties should not
learn anything* about other
parties’ inputs

Talk Outline

6

• What is security in 2PC/MPC?

• Boolean Computation: Yao’s 2-party Garbling protocol

• Arithmetic Computation: Secret sharing and Beaver Triplets

• EzPC: Making MPC usable

Two-party Computation Security

7

Alice should not learn
anything* about Bob’s

input

Two-party Computation Security

8

Net worth:
X $

Net worth:
Y $

What is
our total

net
worth?

Two-party Computation Security

9

Net worth:
X $

Net worth:
Y $

𝑓 (𝑥 , 𝑦)=𝑥+𝑦 𝑓 (𝑥 , 𝑦)=𝑥+𝑦 Alice should not learn
anything* about Bob’s
input; What does Alice

learn?

Two-party Computation Security

10

Net worth:
X $

Net worth:
Y $

Secure Computation
cannot prevent Alice

from learning what she
could have learned
about Bob from the

output (and her input)

Defining Security:
Alice learns nothing more than what can be

learned from x and f(x,y)

Two-party Computation Security

11

Net worth:
X $

Net worth:
Y $Who is richer?

(i.e., is X>Y ?)

Alice and Bob learn if X>Y but nothing more

Two-party Computation Security

12

Net worth:
X $

Net worth:
Y $

Alice and Bob execute
a protocol to compute

f(x,y)

Will Bob learn nothing about x
(other than f(x,y)) even when

he does not execute the
protocol honestly?

Two Kinds of Security –
Semihonest vs Malicious

13

Net worth:
X $

Net worth:
Y $

Semihonest Malicious

• Security guaranteed
when malicious party follows
the protocol honestly

• Security guaranteed even
when malicious party does
not follow the protocol honestly

Secure Multi-party Computation
(MPC)

14

𝑃1

𝑃2

𝑃3 𝑃4

𝑃5

𝑥1

𝑥2

𝑥3
𝑥4

𝑥5

• Similar security notions

• Includes a corruption threshold t < n

• Semihonest: t parties colluding do not
learn any more information when they
all follow the protocol honestly

• Malicious: t parties colluding do not learn
any more information even when they
do not follow the protocol

Talk Outline

15

• What is security in 2PC/MPC?

• Boolean Computation: Yao’s 2-party Garbling protocol

• Arithmetic Computation: Secret sharing and Beaver Triplets

• EzPC: Making MPC usable

Boolean Computation

16

• All compute expressed as Boolean circuits (AND, XOR gates)

• Comparison, Bit-shifts etc. are most efficient
when expressed as Boolean circuits

• Multiplication costs O(l2)

Technique for 2 PC – Garbled
Circuits [Yao86]

17

Garbler Evaluator𝐹

𝐶

𝐶

(Garbled circuit)

𝑋 1 , 𝑋 2

(Garbled inputs)

Oblivious Transfer
 (PK operations)

𝐶

𝑋 1 , 𝑋 2

𝐹 (𝑋1 , 𝑋 2)
𝐹 (𝑋1 , 𝑋 2) 𝐹 (𝑋1 , 𝑋 2)

How to Garble a gate? (E.g.
NAND)

18

 NAND

a0 a1 b0 b1

c0 c1

A B C

0 0 1

0 1 1

1 0 1

1 1 0

A B C Garbled NAND
Gate

a0 b0 c1 Ea (Eb (c1))

a0 b1 c1 Ea (Eb (c1))

a1 b0 c1 Ea (Eb (c1))

a1 b1 c0 Ea (Eb (c0))

0 0

0

0

11

1

1

NAND Gate Truth
Table

 Alice picks 2 random keys per wire (6 per
gate).
 One key corresponds to 0 and the other to 1.

 If A = 0, then key = a0.

A B

C

Truth Table with Keys

19

 NAND

a0 a1 b0 b1

c0 c1

A B C Garbled NAND
Gate

a0 b0 c1 Ea (Eb (c1))

a0 b1 c1 Ea (Eb (c1))

a1 b0 c1 Ea (Eb (c1))

a1 b1 c0 Ea (Eb (c0))

0 0

0

0

11

1

1

 Alice picks 2 random keys per wire (6 per
gate).
 One key corresponds to 0 and the other to 1.

 If A = 0, then key = a0.

A B

C

This ciphertext
alone
will decrypt
correctly.

How does Bob evaluate it?

Truth Table with Keys

How to Garble a gate? (E.g.
NAND)

20

How does a Garbled Circuit
look?

a0, a1

b0, b1

c0, c1

Ea (Eb (c1)),0 0
Ea (Eb (c1)),0 1

Ea (Eb (c1)),1 0
Ea (Eb (c0))1 1

GG1 =

d0, d1

e0, e1

f0, f1

h0, h1

Ec (Ef (h0)),1 1
Ec (Ef (h1)),1 0

Ec (Ef (h1)),0 1
Ec (Ef (h1))0 0

GG3 =

Ed (Ee (f1)),0 1
Ed (Ee (f0)),1 1

Ed (Ee (f1)),0 0
Ed (Ee (f1))1 0

GG2 =

Eh (Ei (j1)),1 0
Eh (Ei (j1)),0 0

Eh (Ei (j0)),1 1
Eh (Ei (j1))0 1

GG4 =

i0, i1

j0, j1

Output wire
value: j1

Decoded to 1 (by
Alice)

Technique for 2 PC – Garbled
Circuits [Yao86]

21

Garbler Evaluator𝐹

𝐶

𝐶

(Garbled circuit)

𝑋 1 , 𝑋 2

(Garbled inputs)

Oblivious Transfer
 (PK operations)

𝐶

𝑋 1 , 𝑋 2

𝐹 (𝑋1 , 𝑋 2)
𝐹 (𝑋1 , 𝑋 2) 𝐹 (𝑋1 , 𝑋 2)

Oblivious Transfer [Rabin81, EGL85]

22

𝑚0 ,𝑚1 𝑏

Learns mb

• Security 1: Alice does not learn b

• Security 2: Bob does not learn m1-b

A protocol for Oblivious Transfer
(OT) from (special) public-key
encryption

23

𝑚0 ,𝑚1 𝑏

• Pick (pkb, skb) and pk1-b

(pk0 , pk1)

c0 = Encpk0(m0) , c1 = Encpk1(m1)

• Decrypt cb to learn mb

• Security 1: Alice does not learn b because
 pk0 and pk1 are indistinguishable

• Security 2: Bob does not learn m1-b because
 he does not know sk1-b

24

Where do OTs fit in Garbled
Circuits?

a0, a1

b0, b1

c0, c1

Ea (Eb (c1)),0 0
Ea (Eb (c1)),0 1

Ea (Eb (c1)),1 0
Ea (Eb (c0))1 1

GG1 =

d0, d1

e0, e1

f0, f1

h0, h1

Ec (Ef (h0)),1 1
Ec (Ef (h1)),1 0

Ec (Ef (h1)),0 1
Ec (Ef (h1))0 0

GG3 =

Ed (Ee (f1)),0 1
Ed (Ee (f0)),1 1

Ed (Ee (f1)),0 0
Ed (Ee (f1))1 0

GG2 =

Eh (Ei (j1)),1 0
Eh (Ei (j1)),0 0

Eh (Ei (j0)),1 1
Eh (Ei (j1))0 1

GG4 =

i0, i1

j0, j1

Output wire
value: j1

Decoded to 1 (by
Alice)

Evaluator Bob must learn keys corresponding to his input
without Garbler Alice knowing Bob’s input

Putting it all together

25

Garbler Evaluator𝐹

𝐶

𝐶

(Garbled circuit)

𝑋 1 , 𝑋 2

(Garbled inputs)

Oblivious Transfer
 (PK operations)

𝐶

𝑋 1 , 𝑋 2

𝐹 (𝑋1 , 𝑋 2)
𝐹 (𝑋1 , 𝑋 2) 𝐹 (𝑋1 , 𝑋 2)

Why is the protocol secure? (Not
easy)

26

Garbler Evaluator𝐹

𝐶

𝐶

(Garbled circuit)

𝑋 1 , 𝑋 2

(Garbled inputs)

Oblivious Transfer
 (PK operations)

𝐶

𝑋 1 , 𝑋 2

𝐹 (𝑋1 , 𝑋 2)
𝐹 (𝑋1 , 𝑋 2) 𝐹 (𝑋1 , 𝑋 2)

Only depends on
C - No information

about Alice’s
input

Why is the protocol secure? (Not
easy)

27

Garbler Evaluator𝐹

𝐶

𝐶

(Garbled circuit)

𝑋 1 , 𝑋 2

(Garbled inputs)

Oblivious Transfer
 (PK operations)

𝐶

𝑋 1 , 𝑋 2

𝐹 (𝑋1 , 𝑋 2)
𝐹 (𝑋1 , 𝑋 2) 𝐹 (𝑋1 , 𝑋 2)

OT security says
Alice does not learn
Bob’s input and Bob
learns only one key

Why is the protocol secure? (Not
easy)

28

Garbler Evaluator𝐹

𝐶

𝐶

(Garbled circuit)

𝑋 1 , 𝑋 2

(Garbled inputs)

Oblivious Transfer
 (PK operations)

𝐶

𝑋 1 , 𝑋 2

𝐹 (𝑋1 , 𝑋 2)
𝐹 (𝑋1 , 𝑋 2) 𝐹 (𝑋1 , 𝑋 2)

(Tricky) proof can show
that Bob only learns
one final key and no

other information

Why is the protocol secure? (Not
easy)

29

Garbler Evaluator𝐹

𝐶

𝐶

(Garbled circuit)

𝑋 1 , 𝑋 2

(Garbled inputs)

Oblivious Transfer
 (PK operations)

𝐶

𝑋 1 , 𝑋 2

𝐹 (𝑋1 , 𝑋 2)
𝐹 (𝑋1 , 𝑋 2) 𝐹 (𝑋1 , 𝑋 2)

Alice only sees one
final key corresponding

to f(x1, x2)

Why is the protocol secure? (Not
easy)

30

Garbler Evaluator𝐹

𝐶

𝐶

(Garbled circuit)

𝑋 1 , 𝑋 2

(Garbled inputs)

Oblivious Transfer
 (PK operations)

𝐶

𝑋 1 , 𝑋 2

𝐹 (𝑋1 , 𝑋 2)
𝐹 (𝑋1 , 𝑋 2) 𝐹 (𝑋1 , 𝑋 2)

• All (informal) security
arguments made only
against semihonest

adversary.
• Malicious adversary

protocols more
complex.

Talk Outline

31

• What is security in 2PC/MPC?

• Boolean Computation: Yao’s 2-party Garbling protocol

• Arithmetic Computation: Secret sharing and Beaver Triplets

• EzPC: Making MPC usable

Secure Multi-party
Computation & Applications to
Private Machine Learning

32

DIVYA GUPTA

1 THE VIEWS EXPRESSED HERE ARE SOLELY THOSE OF THE AUTHOR IN HIS PRIVATE CAPACITY AND DO NOT IN ANY WAY REPRESENT THE VIEWS OF MICROSOFT, OR ANY OTHER ENTITY
OF MICROSOFT.

Talk Outline

33

• Secure Computation for Arithmetic Circuits

• EzPC: Programmable, Efficient, and Scalable Secure
Computation

(applied to private machine learning)

Secure Computation of Arithmetic
Circuits

34

Input Input

 Arithmetic circuit

• Arithmetic circuits have addition and multiplication
gates

Protocol Summary:
• Alice and Bob start with 2-out-2 secret shares of

input
• For a gate, given shares of input wires, run a

protocol to compute shares of output wire

2-out-of-2 Secret sharing scheme

35

• Split secret into two parts
• Single share reveals nothing about
• Combine shares to get

• Example: Uniform shares s.t.

𝑠

𝑠0 𝑠1

Input sharing phase

36

Input Input

• Each party shares its input with other party

Pick s.t. Pick s.t.

𝑥1

𝑦0

Addition gate

37

• Each locally adds the shares of input wires

Compute

Compute

• Correctness:
• Security: trivial

No
Interactio

n

C+¿

Multiplication gate

38

• Need setup such as “Beaver Triplet”
• Parties hold shares of random with

Compute

Compute

𝑒0=𝑎0−𝑥0 , 𝑓 0=𝑏0− 𝑦0

𝑒1=𝑎1−𝑥1 , 𝑓 1=𝑏1− 𝑦1

Correctness
?

Security?

C∗

Reconstruct e and f

Independent of
input and circuit!

Might need a
mix of

protocols!

Secure Computation Protocols

39

• Boolean circuits: Garbled circuits [Yao], GMW, BMR, …..
(Good for expressing comparisons, bitwise operations,
maximum, etc)

• Arithmetic circuits: Using beaver triplets [Beaver], BGW,
CCD, SPDZ, ….

(Good for expressing multiplications and additions)
Very hard for non-
crypto experts to

select a good protocol
for application!

Talk Outline

40

• Secure Computation for Arithmetic Circuits

• EzPC: Programmable, Efficient, and Scalable Secure
Computation (applied to private machine learning)

 Joint work with Nishanth Chandran, Aseem Rastogi and Rahul
Sharma

Many Challenges in using 2PC
• Very hard for developers to write secure 2PC

applications

• Which protocol is best suited for my
application?
• GMW, Yao, BGW, BMR, ……

• How to express the function efficiently?
• Circuits: Boolean vs Arithmetic

• Most protocols require low circuit level
programming
• Tedious and error-prone

• Scalability?

Function

41

Our Goal: Democratizing 2PC

• Programmer-friendly platform
• Developer only specifies functionality

• Generality: Express arbitrary functionalities

• Performance: Automatically choose right circuit
rep.

• Scale to practical tasks

• Formal guarantees of Correctness and Security

Function

Make 2PC accessible to
developers

42

Current state of affairs
Option 1

• Program in one of the several DSLs such as
Fairplay, Wysteria, ObliVM, CBMC-GC, SMCL,
Sharemind, etc

• Pro: High-level programmer friendly framework
• Pro: Developer is oblivious of underlying crypto

magic

• Cons: Poor performance (single circuit
representation)
• Circuit is exclusively Boolean or Arithmetic

Function:

• Since complexity of 2PC protocol grows with circuit size, for performance,
• Require Arithmetic circuit for ; Boolean circuit for comparison with

• None of the high-level frameworks support a mix of Arithmetic and
Boolean circuit

43

Alice:
Bob:

Current state of affairs
Option 2

• Program in ABY framework (Demmler et al.
NDSS-15)

• Pro: Uses a combination of Boolean and
Arithmetic circuits

• Pro: Much better performance

• Cons: Not programmer friendly (low level)
• Manually split compute into Boolean &

Arithmetic
• Write corresponding low-level circuits for

each part
• Insert inter-conversions between them

• Cons: Tedious and Error-prone + some
crypto expertise

Function:

44

Current state of affairs

Option 3

• Design specialized protocols for functions of
interest

• Pro: Good performance

• Cons: Requires a lot of cryptographic
expertise

• Cons: No generality: Great effort for each
function

Function:

45

State of the art in 2PC (for)

46

DSLs like ObliVM,
CBMC-GC, etc

✔

Specialized Protocols
like MiniONN, etc

✔

✔

EzPC ✔ ✔

ProgrammabilityGeneralityPerformanceSolution

ABY

Our
Approach

SecurityScalability

✔ ✗

✗ ✔

✗ ✗

✔

✔

✔

✔

✔

✗

✔

✔

✔

Our tool: EzPC (Easy two-party computation)

EzPC
Source
progra

m

EzPC
Compil

er

47

ABY
C++
Code

P
A

P
B

2PC
protocol

EzPC
Source

Language

EzPC
Compiler

Scalabilit
y

Formal
Guarante

es

Evaluatio
n

EzPC: Source Programs

Function:

• Developer writes high-level
code for function (devoid of
crypto)

• Very similar to code in C++
or java

• Compiler takes care of all
crypto

• Generality and
Customizability
• Easy to modify programs

• Contrast this with ABY
providing low-level circuit
APIs

• Base types and array types
• Mathematical operators (+, *, >, &,

>>, ….)
• Statements for assignments, array

read/write, bounded for loops and if
condition

uint w[30] = input1();uint x[30] = input2();uint b = input1();uint acc = 0;for i in [0:30] {acc = acc + (w[i] * x[i]); }Output2(acc > b ? 1 : 0);
48

EzPC: How the compiler works?
• EzPC source program ABY code
• Problem: Automatically assigns variables and operators to Boolean or

Arithmetic type
• Using cryptographic costs of primitive operators as well as inter-

conversion costs

• Hard problem, can require exponential time
• Heuristics-based cryptographic cost-aware compilerOur heuristics

₋ Hard Constraints: MULT in Arithmetic; GT/COND/BitwiseAND in Boolean
₋ Soft Constraints: ADD can be either in Arithmetic or Boolean based on

operands

₋ Minimize inter-conversion cost
₋ Maintain a map from variables to available types

49

EzPC: Cryptographic Cost-aware
Compiler

uint w[30] = input1();uint x[30] = input2();uint b = input1();uint acc = 0;for i in [0:30] {uint temp = w[i] * x[i];acc = acc + temp; }Output2(acc > b ? 1 : 0);

₋ Hard Constraints: MULT in Arithmetic; GT/COND/BitwiseAND in Boolean
₋ Soft Constraints: ADD can be either in Arithmetic or Boolean based on

operands uintA w[30] = input1();uintA x[30] = input2();uintB b = input1();uintA acc = 0;for i in [0:30] {uintA temp = w[i] x[i];acc = acc temp; }uintB acc_B = ;Output2(acc_B 1 : 0);

Source
Program

Intermediate
Program
(Annotate all
variables & operators
and insert inter-
conversions)

50

EzPC: Cryptographic Cost-aware
Compiler

uint acc = 0;for i in [0:30] {uint temp = w[i] * x[i];acc = acc + temp; }uint o =(acc > b ? 1 : 0);uint y = acc * w[0];uint z = acc & b;

₋ Minimize inter-conversions: Maintain a map from variables to available
share type uintA acc = 0;for i in [0:30] {uintA temp = w[i] x[i];acc = acc temp; }uintB acc_B = ;uintB o = (acc_B 1 : 0);uintA y = acc w[0];uintB z = acc_B b;

Source
Program

Intermediate
Program

51

uint Acc = 0;for i in [0:1000000] {uint temp = w[i] * x[i];Acc = Acc + temp; } Share(Acc);P2(Acc)Acc = uint z = 0;for i in [0:1000000] {uint temp = u[i] * v[i];z = z + temp; }Output (Acc > z);

EzPC: Scalability
• Program needs to be written as

circuit
• Circuit needs to fit in memory

• Unroll the loops (Circuits don’t have
loops)
• Circuit size can be huge (>28

GB)

• Secure Code Partitioning
• Partition into P1 and P2
• Need to pass Acc to P2 securely
• Secret-share Acc b/w Alice & Bob
• P2 reconstructs Acc

• Very natural and crucial for
benchmarks such as large DNNs,
matrix factorization, etc.

:=
Acc -

 :=

Program:

52

P
1𝑤 ,𝑢 𝑥 ,𝑣

Revealing Acc to
Alice or Bob

breaks security!

EzPC: Formal Guarantees

P P
A ,P B

O O ≡

Source
Program

Two-party
Protocol

Trusted
party

semantics

Protocol
Semantics

• Correctness
• Formulate trusted party semantics

and protocol semantics
• For a well-typed P, both

semantics
• terminate without errors
• produce same outputs

• No array index out of bounds
errors

53

EzPC: Formal Guarantees
• Security

• Semi-honest security against corruption of one party
• Honest-but-curious adversary that follows the protocol faithfully BUT is eager

to learn more

Security of
2PC back-

end

Security of
EzPC

programs

54

• Formally reduce security of
compiler to semi-honest security of
2PC back-end (ABY)

• Security of partitioning scheme

• Eavesdrop on
communication
• Learns nothing

about Alice’s or
Bob’s input

• Corrupt Alice
• Learn nothing about

Bob’s input (beyond
o/p)

55

Applications of EzPC to Private Machine
Learning

Secure Prediction using Secure
2PC

• Bob wants to
learn output of
classifier

• Solved by 2PC!

• Bob learns
classifier output
only

• Azure learns
nothing about
Bob’s input!

2PC
protocol

56

ML classifier for
diabetes

Medical report
Data is privateModel is IP

F(Model, Data)

EzPC: Evaluation
• Demonstrate generality by evaluating EzPC on large variety of benchmarks

• In all cases, EzPC protocols BEAT/MATCH performance of state-of-the-art
specialized protocols

• Writing benchmarks did not require any crypto know-how

• Lines of code (LOC) is proportional to C++ code for describing the
functionality

Generic 2PC protocols gives state-of-art performance (if
done smartly)!

57

Deep Neural Networks
• Many layers; Each layer has

• A linear operation that can be written as a matrix multiplication
• A non-linear activation function such as Maxpool, ReLU, etc

• Matrix multiplication is suited for Arithmetic; non-linear function is suited to
Boolean

• Cryptonets (ICML 16)
• Based on Homomorphic Encryption (HE)
• MNIST: 1 fully connected, 1 convolutional, square activation function

DNN Crypton
ets Time

(s)

EzPC
Time (s)

Cryptonets 297 0.6

2PC based

approach

much faster

than HE!

58

Our Evaluation
Benchmar

k

Prev.
Time
(s)

EzPC
Time
(s)

Spee
dup

EzP
C

LOC

Naïve
Bayes

(Audiology)
3.9 2.9

1.3
x

50

Decision
Trees
(ECG)

0.4 0.1 4x 20

SecureML
(MNIST)

1.1 0.7
1.5
x

78

MiniONN
(MNIST)

9.4 5.1
1.8
x

154

MiniONN
CIFAR-10

544 265 2x 336

Matrix
Factorizatio

n
10440 546 19x 1494

59

• Tensorflow tutorial benchmarks
• Softmax regression for MNIST: argmax
• DNN for MNIST: 2 convolutional, 2 fully connected, ReLU activation. 99.2%

accuracy

• Bonsai (ICML 17): Much smaller models for weak IoT devices, reasonable
accuracy
• Tree like structure of the model

 More ML classifiers in EzPC

Dataset Depth
LAN

(1ms)
Time (s)

WAN
(40ms)
Time (s)

LOC

USPS 2 0.2 0.9 156

WARD 3 0.3 1.1 283

Demonstrates

programmability

and generality of

EzPC

LAN
(1ms)

Time (s)

WAN
(40ms)
Time (s)

LOC

Regressio
n 0.1 0.7 38

DNN 30.5 60.3 172

First 2PC

implementations

for these

benchmarks

First 2PC

implementations

for these

benchmarks

60

EzPC: In a nut-shell
• Developer friendly
• Easy to get correct functionality

• Generality and Customizability
• Small change in functionality requires small change in

code

• State-of-the-art performance
• Beats specialized protocols

• Scales to large programs

• Formal guarantees of correctness and security

61

Future Directions
• Generalize EzPC to more than 2 parties

• Integrate existing MPC protocols to EzPC
• Build new MPC protocols that combine Arithmetic and

Boolean

• Malicious parties?

• Make language of EzPC more powerful
• Enhance the expressiveness of the language with functions
• Better support for floating point operations

• Find other exciting applications apart from private machine
learning

62

	Slide 1
	Machine Learning on Health Records
	Private Set Intersection
	A way to solve this problem
	Slide 5
	Talk Outline
	Two-party Computation Security
	Two-party Computation Security
	Two-party Computation Security
	Two-party Computation Security
	Two-party Computation Security
	Two-party Computation Security
	Two Kinds of Security – Semihonest vs Malicious
	Secure Multi-party Computation (MPC)
	Talk Outline
	Boolean Computation
	Technique for 2 PC – Garbled Circuits [Yao86]
	How to Garble a gate? (E.g. NAND)
	How to Garble a gate? (E.g. NAND)
	How does a Garbled Circuit look?
	Technique for 2 PC – Garbled Circuits [Yao86]
	Oblivious Transfer [Rabin81, EGL85]
	Slide 23
	Where do OTs fit in Garbled Circuits?
	Putting it all together
	Why is the protocol secure? (Not easy)
	Why is the protocol secure? (Not easy)
	Why is the protocol secure? (Not easy)
	Why is the protocol secure? (Not easy)
	Why is the protocol secure? (Not easy)
	Talk Outline
	Slide 32
	Talk Outline
	Secure Computation of Arithmetic Circuits
	2-out-of-2 Secret sharing scheme
	Input sharing phase
	Addition gate
	Multiplication gate
	Secure Computation Protocols
	Talk Outline
	Many Challenges in using 2PC
	Our Goal: Democratizing 2PC
	Current state of affairs
	Current state of affairs
	Current state of affairs
	
	Our tool: EzPC (Easy two-party computation)
	EzPC: Source Programs
	EzPC: How the compiler works?
	EzPC: Cryptographic Cost-aware Compiler
	EzPC: Cryptographic Cost-aware Compiler
	EzPC: Scalability
	EzPC: Formal Guarantees
	EzPC: Formal Guarantees
	Applications of EzPC to Private Machine Learning
	Secure Prediction using Secure 2PC
	EzPC: Evaluation
	Deep Neural Networks
	Our Evaluation
	More ML classifiers in EzPC
	EzPC: In a nut-shell
	Future Directions

