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Performance in supervised learning is often measured via a
(label-dependent) loss function:

KZYX)/}QR_I_

g™

S

f()’,)’}) = loss’ incurred on predicting )A;
when true label is y
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Formal Setup

Instance space X

Label space Y ={1,...,n} =[n]
Prediction space Y = {1,...,k} =[k]
Loss matrix L € R™

Goal: Given training sample

S=(0(x,y),...(x,,y,) € (X x[n])",

learn prediction model A : X —[K]
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What is a Good Prediction Model
h: X2 [k]?

Should minimize target loss on new instances

Assume all instance-label pairs drawn i.i.d. from a probability
distribution D on X x[n].

er;[h] = E(x,y)~D[€(y9h(x))]j
f

Generalization L-error (or L-risk) of 7 (w.r.t. D)
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Bayes Error and Regret

Bayes L-error for D:

L* = inf er
h:X—[ k]

L-regret of i w.r.t. D:

(mgretg[h] =er,[h]- er;’*)
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Statistical Consistency

Learning
. Algorithm

Universally Bayes L-consistent if
Bayes L-consistent w.r.t. all distributions D




How do we design a statistically
consistent learning algorithm for a
given loss matrix L?
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Empirical Risk Minimization (ERM)

Let A be some class of functions from X to {£1}.
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ERM
e h, € arhgergmzl(h(x)#yl)

\ 0-1 Ioss Y

For suitable H, universally 0-1 consistent in H;
suitable extensions can be made universally Bayes 0-1 consistent

x Computationally hard!
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Example: Support Vector Machines

SVM
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Exam ple: Logistic Regression

Logistic
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Classification-Calibrated Surrogates

(Theorem. If 1 is classification-calibrated’, then

Bayes y-consistency —> Bayes 0-1 consistency
\ (after applying sign)

/Hinge JLogistic JExponentiaI

[Bartlett et al., 2006]
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Surrogate Risk Minimization

let 1 :[n]x R’ — R, pred: R’ —[k].

Let F' be some class of functions from X to RA.
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J For convex 1y and suitable F, computationally efficient!

For suitable F;, universally 1-consistent in F;
e suitable extensions can be made universally Bayes 1\-consistent



L-Calibrated Surrogates

ﬂ'heorem. If ¢ is "L-calibrated’, then

Bayes y-consistency =—>  Bayes L-consistency
(after applying some pred)

[Zhang, 2004; Tewari & Bartlett, 2007; Ramaswamy & Agarwal, 2012]
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Recent Work on Convex Calibrated
Surrogates for Specific Target Losses L

Multiclass 0-1 Loss
Zhang, 2004; Tewari & Bartlett, 2007

Various Document (Subset) Ranking Losses

Cossock & Zhang, 2008; Xia et al, 2008; Duchi et al, 2010;
Ravikumar et al, 2011; Buffoni et al, 2011; Lan et al, 2012;
Calauzenes et al, 2012

Multilabel Losses
Gao & Zhou, 2011; Dembczynski et al, 2011



Our Work

Unified Approach for Designing
Convex Calibrated Surrogates for
General Loss Matrices
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Trigger Probability Sets of Loss L

(0,1,0)

(%, %, 0) (0, 74, %)

Qs

(1,0,0) (%2, 0, ) (0,0,1)



Positive Normal Sets of Surrogate
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Necessary Condition for Calibration

Theorem. If vy is L-calibrated, then every positive
normal set of 1p must be contained in some
trigger probability set of L.



Necessary Condition for Calibration

(0,1, 0)

Proof by picture.

(%2, %, 0) (0, %, %)

-
-
-
-
-
-~
-
-~
-

I,

2

(1,0,0) (%2, 0, %) (0,0, 1)

[Ramaswamy & Agarwal, 2012; 2014]
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[Ramaswamy & Agarwal, 2012; 2014]
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[Ramaswamy & Agarwal, 2012; 2014]



Sufficient Condition for Calibration

Theorem. If there is a finite collection of positive
normal sets of 1 that are each contained in some
trigger probability set of L and that collectively cover
the simplex, then  is L-calibrated.



Example
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[Ramaswamy & Agarwal, 2012; 2014]
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[Ramaswamy & Agarwal, 2012; 2014]
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Convex Calibration Dimension

CCdim(L) = smallest dimension d
A that supports a convex
Rd calibrated surrogate for L

> CCdim(L) < n-1



Upper Bound on
Convex Calibration Dimension

Theorem.

CCdim(L) < rank(L)



Lower Bound on
Convex Calibration Dimension

Theorem. For losses L whose columns can be
obtained from one another by permuting entries,

CCdim(L) > rank(L) - 2
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Example: Multiclass 0-1 Classification

Y =Y =[n]
n=k>?2

rank(L1) = n




Example: Sequence Prediction
with Hamming Loss

Y=Y ={0,1}" (\
n=k=2' r=3)

000 001 010 O11 100 101 110 111

0000 1 1 2 1 2 2 3
otl1 0o 2 1 2 1 3 2
Hem — 0017 2 0 1 2 3 1 2
o112 1 1 0 3 2 2 1
0|1 2 2 3 0 1 1 2
wil2 1 3 2 1 0 2 1
m0l2 3 1 2 1 2 0 1
{3 2 2 1 2 1 1 0
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Example: Document Ranking
with Pairwise Disagreement Loss

Y=G.,Y=5
n=|G,| k=r!
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Example: Document Ranking
with Pairwise Disagreement Loss
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Application: Stronger Versions of
Recent Results on Non-Existence of
Convex Calibrated Surrogates

(Duchi et al, 2010; Calauzenes
et al, 2012): no convex
calibrated surrogates for L'P
in <7 dimensions



Application: Stronger Versions of
Recent Results on Non-Existence of
Convex Calibrated Surrogates

(Duchi et al, 2010; Calauzenes
et al, 2012): no convex
calibrated surrogates for L'P
in <7 dimensions

Our results: no convex
calibrated surrogates for L'P
in <r(r-1)/2 — 2 dimensions!



Our Work

Can we design explicit
low-dimensional
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Explicit Convex Calibrated Least Squares
Surrogate with d = rank(L)

p— — p— —

L _ | A [B]
dx k

_ dnxk _ Jdnxd

[Ramaswamy, Agarwal & Tewari, 2013]



Explicit Convex Calibrated Least Squares
Surrogate with d = rank(L)

[ YU w) =Y (u;-A,)

d
pred”(u) € argmin E uB.

¢ I
YeLL] i



Explicit Convex Calibrated Output Code
Based Surrogate with d = rank(L)

p— —_ — —

L _ | A [B]
dx k

_ dnxk _ Jdnxd

[Ramaswamy, Babu, Agarwal & Williamson, 2014]



Explicit Convex Calibrated Output Code
Based Surrogate with d = rank(L)

Y (rw) = Y (Cyp(Luy)+(1-C)p(-1u,))

d
pred”“(u) € argmin » A (u.)f
J JY

1

yelk] I



Explicit Convex Calibrated Output Code
Based Surrogate with d = rank(L)

Y ()= ) (Clp{lu)+(1-C Jpf-1u))

Strictly proper composite
binary surrogate

/

N\

[Ramaswamy, Babu, Agarwal & Williamson, 2014]



Explicit Convex Calibrated Output Code
Based Surrogate with d = rank(L)

d

Y (yu) = Wm—l,w g

o Code matrix \

constructed from A
/

[Ramaswamy, Babu, Agarwal & Williamson, 2014]



Explicit Convex Calibrated Output Code
Based Surrogate with d = rank(L)

Inverse link

associated with ¢

e
d
pred®* (u) € argmin E(llg(uj)/?)ﬁ\
1
/

yelk] jm

[Ramaswamy, Babu, Agarwal & Williamson, 2014]



Explicit Convex Calibrated Output Code
Based Surrogate with d = rank(L)

Obtained from B

pred”“(u) € argmmE)L (u;

yELk]

/

[Ramaswamy, Babu, Agarwal & Williamson, 2014]



Current/Future Directions

Relaxing universal
consistency requirement

Relaxing exact consistency
requirement

Complex performance
measures



Current/Future Directions

Relaxing universal
consistency requirement



Surrogates for
Multiclass 0-1 Classification

Popular Crammer-Singer surrogate:

CS

YO0 =max(1=t, =), pdimensiona
pred“>(u) € argmax U surrogate
YELk]



Surrogates for
Multiclass 0-1 Classification

Crammer-Singer algorithm is 0-1
consistent only for

o distributions D satisfying \

‘"dominant-label’ condition

/

[Zhang, 2004; Tewari & Bartlett, 2007]



Surrogates for
Multiclass 0-1 Classification

Under dominant-label
condition, log n
dimensions suffice!

/

[Ramaswamy, Tewari & Agarwal, 2015]



Surrogates for Document Ranking
with Pairwise Disagreement Loss

Least Squares surrogate: O(r?)-
dimensional
surrogate

yoow=3 Y, -y,

i=1 i

pred™(u) € argminizuijl(a(i) >0()))

0SS icl i



Surrogates for Document Ranking
with Pairwise Disagreement Loss

Resulting algorithm is
universally consistent, BUT...



Surrogates for Document Ranking
with Pairwise Disagreement Loss

Least Squares surrogate:

A MWFAS 111
st (y,u) = EE(MU, -, )2

i=] i
red™> (u argmin r w.1(o() > o(j
pred"*(w) &/argm EE A(0(@) > o())

[Ramaswamy, Agarwal & Tewari, 2013]



Surrogates for Document Ranking
with Pairwise Disagreement Loss

Efficient implementation
under DAG’ condition

/

[Ramaswamy, Agarwal & Tewari, 2013]



Current/Future Directions

Relaxing exact consistency
requirement



Approximate Consistency

Data Space Model Space

I N G

/
\

( @ Optimal Model
/

~_”

‘ Learned Model

G )L Y




Approximate Consistency via
Approximately Calibrated Surrogates

error

. - (Bayes error)

Generalization

Bayes error

Training sample size

[Ramaswamy & Agarwal, in progress]



Current/Future Directions

Complex performance
measures



Example: F-Measure
Y=Y = {1}

F, [h] = 2-Prec,|h]-Rec,|h]

Prec [h]+Rec [ /]

[Narasimhan, Vaish & Agarwal, 2014;
Narasimhan, Ramaswamy & Agarwal, 2015]



Summary

Given a learning problem defined by
a loss matrix L, need L-consistent
learning algorithms i

—_——
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Summary

Given a learning problem defined by
a loss matrix L, need L-consistent
learning algorithms

Many popular
learning algorithms

minimize a convex
surrogate loss

\



Summary

Given a learning problem defined by
a loss matrix L, need L-consistent
learning algorithms

Many popular
learning algorithms
minimize a convex

Our work:
surrogate loss

General methodology

for designing convex

calibrated surrogates
for any loss L



Open Questions

General characterization of
convex calibration
dimension of a loss L.? N

/



Open Questions

General characterization of
convex calibration
dimension of a loss L.? N

Convex calibrated surrogates
with d = CCdim(L) ?




Open Questions

General characterization of
convex calibration
dimension of a loss L.?

Convex calibrated surrogates
with d = CCdim(L) ?

Other structure in
loss matrices?
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