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Y = Ŷ =
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(1− yi f (xi ))+
i=1

m

∑

Hinge surrogate�



Example:	
  Logis8c	
  Regression	
  

Logis8c	
  
Regression	
  

S 

hS = sign  fS

fS ∈ argmin
f∈F

ln(1+ e−yi f (xi ) )
i=1

m

∑

Logistic surrogate�



Example:	
  AdaBoost	
  

AdaBoost	
  S 

hS = sign  fS

fS ∈ argmin
f∈F

e−yi f (xi )
i=1

m

∑

Exponential surrogate�



Surrogate	
  Risk	
  Minimiza8on	
  

ψ-­‐ERM	
  
in	
  F 

S 

Let 
 

Let	
  	
  F 	
  be	
  some	
  class	
  of	
  func8ons	
  from	
  	
  X 	
  to	
  	
  R.	
  
ψ : {±1}×R→ R+.

fS ∈ argmin
f∈F

ψ(yi, f (xi ))
i=1

m

∑

hS = sign  fS
ψ-­‐loss	
  

For	
  convex	
  ψ and	
  suitable	
  F,	
  computa8onally	
  efficient!	
  



Surrogate	
  Risk	
  Minimiza8on	
  

ψ-­‐ERM	
  
in	
  F 

S 

Let 
 

Let	
  	
  F 	
  be	
  some	
  class	
  of	
  func8ons	
  from	
  	
  X 	
  to	
  	
  R.	
  
ψ : {±1}×R→ R+.

fS ∈ argmin
f∈F

ψ(yi, f (xi ))
i=1

m

∑

hS = sign  fS
ψ-­‐loss	
  

For	
  convex	
  ψ and	
  suitable	
  F,	
  computa8onally	
  efficient!	
  

For	
  suitable	
  F,	
  universally	
  ψ-­‐consistent	
  in	
  F;	
  	
  
suitable	
  extensions	
  can	
  be	
  made	
  universally	
  Bayes	
  ψ-­‐consistent	
  ?	
  



Classifica8on-­‐Calibrated	
  Surrogates	
  

Theorem.	
  If	
  ψ	
  is	
  `classifica8on-­‐calibrated’,	
  then	
  

Bayes	
  ψ-­‐consistency	
   Bayes	
  0-­‐1	
  consistency	
  
(afer	
  applying	
  sign)	
  

[Bartlel	
  et	
  al.,	
  2006]	
  

⇒



Classifica8on-­‐Calibrated	
  Surrogates	
  

[Bartlel	
  et	
  al.,	
  2006]	
  

Hinge	
  

Theorem.	
  If	
  ψ	
  is	
  `classifica8on-­‐calibrated’,	
  then	
  

Bayes	
  ψ-­‐consistency	
   Bayes	
  0-­‐1	
  consistency	
  
(afer	
  applying	
  sign)	
  

⇒



Classifica8on-­‐Calibrated	
  Surrogates	
  

[Bartlel	
  et	
  al.,	
  2006]	
  

Hinge	
   Logis8c	
  

Theorem.	
  If	
  ψ	
  is	
  `classifica8on-­‐calibrated’,	
  then	
  

Bayes	
  ψ-­‐consistency	
   Bayes	
  0-­‐1	
  consistency	
  
(afer	
  applying	
  sign)	
  

⇒



Classifica8on-­‐Calibrated	
  Surrogates	
  

[Bartlel	
  et	
  al.,	
  2006]	
  

Hinge	
   Logis8c	
   Exponen8al	
  

Theorem.	
  If	
  ψ	
  is	
  `classifica8on-­‐calibrated’,	
  then	
  

Bayes	
  ψ-­‐consistency	
   Bayes	
  0-­‐1	
  consistency	
  
(afer	
  applying	
  sign)	
  

⇒



Road	
  Map	
  

Supervised	
  Learning	
  

Binary	
  
Classifica8on	
  

Learning	
  in	
  Complex	
  
Predic8on	
  Spaces	
  



Empirical	
  Risk	
  Minimiza8on	
  (ERM)	
  

Let	
  	
  H	
  	
  be	
  some	
  class	
  of	
  func8ons	
  from	
  	
  X 	
  to	
  	
  [k].	
  

L-­‐ERM	
  
in	
  H 

S 



Empirical	
  Risk	
  Minimiza8on	
  (ERM)	
  

Let	
  	
  H	
  	
  be	
  some	
  class	
  of	
  func8ons	
  from	
  	
  X 	
  to	
  	
  [k].	
  

L-­‐ERM	
  
in	
  H 

S hS ∈ argmin
h∈H

(yi,h(xi ))
i=1

m

∑
Target	
  loss	
  



Empirical	
  Risk	
  Minimiza8on	
  (ERM)	
  

Let	
  	
  H	
  	
  be	
  some	
  class	
  of	
  func8ons	
  from	
  	
  X 	
  to	
  	
  [k].	
  

L-­‐ERM	
  
in	
  H 

S 

For	
  suitable	
  H,	
  universally	
  L-­‐consistent	
  in	
  H;	
  	
  
suitable	
  extensions	
  can	
  be	
  made	
  universally	
  Bayes	
  L-­‐consistent	
  

Computa8onally	
  hard!	
  

hS ∈ argmin
h∈H

(yi,h(xi ))
i=1

m

∑
Target	
  loss	
  



Surrogate	
  Risk	
  Minimiza8on	
  

Surrogate	
  
predic8on	
  space	
  

Rd



Surrogate	
  Risk	
  Minimiza8on	
  

Surrogate	
  loss	
  
func8on	
  

ψ :[n]×Rd → R+



Surrogate	
  Risk	
  Minimiza8on	
  

Surrogate	
  loss	
  
func8on	
  

ψ :[n]×Rd → R+



Surrogate	
  Risk	
  Minimiza8on	
  

Surrogate	
  op8miza8on	
  
problem	
  (convex	
  for	
  

suitable	
  surrogate	
  loss)	
  

min
f

ψ (yi, f(xi ))
i=1

m

∑

Functions mapping �
X to Rd 



Surrogate	
  Risk	
  Minimiza8on	
  

Map	
  back	
  (con8nuous)	
  
surrogate	
  predic8ons	
  to	
  

(discrete)	
  target	
  
predic8on	
  space	
  

pred	
  
Rd



Surrogate	
  Risk	
  Minimiza8on	
  

ψ-­‐ERM	
  
in	
  F 

S 

Let  
	
  

Let	
  	
  F 	
  be	
  some	
  class	
  of	
  func8ons	
  from	
  	
  X 	
  to	
  	
  Rd.	
  
ψ :[n]×Rd → R+, pred :R

d → [k].



Surrogate	
  Risk	
  Minimiza8on	
  

ψ-­‐ERM	
  
in	
  F 

S 
ψ-­‐loss	
  

Let  
	
  

Let	
  	
  F 	
  be	
  some	
  class	
  of	
  func8ons	
  from	
  	
  X 	
  to	
  	
  Rd.	
  
ψ :[n]×Rd → R+, pred :R

d → [k].

fS ∈ argmin
f∈F

ψ(yi, f(xi ))
i=1

m

∑



Surrogate	
  Risk	
  Minimiza8on	
  

ψ-­‐ERM	
  
in	
  F 

S 
ψ-­‐loss	
  

Let  
	
  

Let	
  	
  F 	
  be	
  some	
  class	
  of	
  func8ons	
  from	
  	
  X 	
  to	
  	
  Rd.	
  
ψ :[n]×Rd → R+, pred :R

d → [k].

fS ∈ argmin
f∈F

ψ(yi, f(xi ))
i=1

m

∑

hS = pred  fS



Surrogate	
  Risk	
  Minimiza8on	
  

ψ-­‐ERM	
  
in	
  F 

S 
ψ-­‐loss	
  

Let  
	
  

Let	
  	
  F 	
  be	
  some	
  class	
  of	
  func8ons	
  from	
  	
  X 	
  to	
  	
  Rd.	
  
ψ :[n]×Rd → R+, pred :R

d → [k].

fS ∈ argmin
f∈F

ψ(yi, f(xi ))
i=1

m

∑

hS = pred  fS

For	
  convex	
  ψ and	
  suitable	
  F,	
  computa8onally	
  efficient!	
  

For	
  suitable	
  F,	
  universally	
  ψ-­‐consistent	
  in	
  F;	
  	
  
suitable	
  extensions	
  can	
  be	
  made	
  universally	
  Bayes	
  ψ-­‐consistent	
  ?	
  



L-­‐Calibrated	
  Surrogates	
  

Theorem.	
  If	
  ψ	
  is	
  `L-­‐calibrated’,	
  then	
  

Bayes	
  ψ-­‐consistency	
   Bayes	
  L-­‐consistency	
  
(afer	
  applying	
  some	
  pred)	
  

[Zhang,	
  2004;	
  Tewari	
  &	
  Bartlel,	
  2007;	
  Ramaswamy	
  &	
  Agarwal,	
  2012]	
  

⇒



How	
  do	
  we	
  design	
  convex	
  
calibrated	
  surrogates	
  for	
  a	
  given	
  

loss	
  matrix	
  L?	
  



Recent	
  Work	
  on	
  Convex	
  Calibrated	
  
Surrogates	
  for	
  Specific	
  Target	
  Losses	
  L 
Mul8class	
  0-­‐1	
  Loss	
  
	
  

Zhang,	
  2004;	
  Tewari	
  	
  &	
  Bartlel,	
  2007	
  
	
  

Various	
  Document	
  (Subset)	
  Ranking	
  Losses	
  
	
  

Cossock	
  &	
  Zhang,	
  2008;	
  Xia	
  et	
  al,	
  2008;	
  Duchi	
  et	
  al,	
  2010;	
  
Ravikumar	
  et	
  al,	
  2011;	
  Buffoni	
  et	
  al,	
  2011;	
  Lan	
  et	
  al,	
  2012;	
  
Calauzenes	
  et	
  al,	
  2012	
  
	
  

Mul8label	
  Losses	
  
	
  

Gao	
  &	
  Zhou,	
  2011;	
  Dembczynski	
  et	
  al,	
  2011	
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General	
  Loss	
  Matrices	
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When	
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calibrated	
  for	
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  for	
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  smallest	
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a	
  convex	
  calibrated	
  
surrogate	
  for	
  L?	
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  Work	
  

Unified	
  Approach	
  for	
  Designing	
  	
  
Convex	
  Calibrated	
  Surrogates	
  for	
  	
  

General	
  Loss	
  Matrices	
  

When	
  is	
  a	
  surrogate	
  
calibrated	
  for	
  L?	
  

What	
  is	
  the	
  smallest	
  
dimension	
  d	
  that	
  supports	
  

a	
  convex	
  calibrated	
  
surrogate	
  for	
  L?	
  

Can	
  we	
  design	
  explicit	
  
low-­‐dimensional	
  
surrogates	
  for	
  L?	
  



Our	
  Work	
  

Unified	
  Approach	
  for	
  Designing	
  	
  
Convex	
  Calibrated	
  Surrogates	
  for	
  	
  

General	
  Loss	
  Matrices	
  
What	
  is	
  the	
  smallest	
  

dimension	
  d	
  that	
  supports	
  
a	
  convex	
  calibrated	
  
surrogate	
  for	
  L?	
  

When	
  is	
  a	
  surrogate	
  
calibrated	
  for	
  L?	
  

Can	
  we	
  design	
  explicit	
  
low-­‐dimensional	
  
surrogates	
  for	
  L?	
  



Trigger	
  Probability	
  Sets	
  of	
  Loss	
  L 



Posi8ve	
  Normal	
  Sets	
  of	
  Surrogate	
  ψ	





Necessary	
  Condi8on	
  for	
  Calibra8on	



Theorem.	
  	
  If	
  ψ	
  is	
  L-­‐calibrated,	
  then	
  every	
  posi8ve	
  	
  
normal	
  set	
  of	
  ψ	
  must	
  be	
  contained	
  in	
  some	
  	
  
trigger	
  probability	
  set	
  of	
  L.	
  	
  	
  

[Ramaswamy	
  &	
  Agarwal,	
  2012;	
  2014]	
  



Necessary	
  Condi8on	
  for	
  Calibra8on	



Proof	
  by	
  picture.	
  

[Ramaswamy	
  &	
  Agarwal,	
  2012;	
  2014]	
  



Example	



[Ramaswamy	
  &	
  Agarwal,	
  2012;	
  2014]	
  

L ψ	





Example	



[Ramaswamy	
  &	
  Agarwal,	
  2012;	
  2014]	
  

L ψ	



✗



Sufficient	
  Condi8on	
  for	
  Calibra8on	



[Ramaswamy	
  &	
  Agarwal,	
  2012;	
  2014]	
  

Theorem.	
  	
  If	
  there	
  is	
  a	
  finite	
  collec8on	
  of	
  posi8ve	
  	
  
normal	
  sets	
  of	
  ψ	
  that	
  are	
  each	
  contained	
  in	
  some	
  	
  
trigger	
  probability	
  set	
  of	
  L and	
  that	
  collec8vely	
  cover	
  	
  
the	
  simplex,	
  then	
  ψ	
  is	
  L-­‐calibrated.	
  



Example	



[Ramaswamy	
  &	
  Agarwal,	
  2012;	
  2014]	
  

L ψ	





Example	



[Ramaswamy	
  &	
  Agarwal,	
  2012;	
  2014]	
  

L ψ	



✓



Our	
  Work	
  

Unified	
  Approach	
  for	
  Designing	
  	
  
Convex	
  Calibrated	
  Surrogates	
  for	
  	
  

General	
  Loss	
  Matrices	
  

When	
  is	
  a	
  surrogate	
  
calibrated	
  for	
  L?	
  

Can	
  we	
  design	
  explicit	
  
low-­‐dimensional	
  
surrogates	
  for	
  L?	
  

What	
  is	
  the	
  smallest	
  
dimension	
  d	
  that	
  supports	
  

a	
  convex	
  calibrated	
  
surrogate	
  for	
  L?	
  



Convex	
  Calibra8on	
  Dimension	
  

CCdim(L)	
  =	
  smallest	
  dimension	
  d 
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  that	
  supports	
  a	
  convex	
  	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  calibrated	
  surrogate	
  for	
  L 

[Ramaswamy	
  &	
  Agarwal,	
  2012;	
  2014]	
  

Rd



Convex	
  Calibra8on	
  Dimension	
  

CCdim(L)	
  =	
  smallest	
  dimension	
  d 
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  that	
  supports	
  a	
  convex	
  	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  calibrated	
  surrogate	
  for	
  L 

[Ramaswamy	
  &	
  Agarwal,	
  2012;	
  2014]	
  

CCdim(L)  ≤  n-1 

Rd



Upper	
  Bound	
  on	
  	
  
Convex	
  Calibra8on	
  Dimension	
  

Theorem.    
 

 CCdim(L)  ≤  rank(L) 

[Ramaswamy	
  &	
  Agarwal,	
  2012;	
  2014]	
  



Lower	
  Bound	
  on	
  	
  
Convex	
  Calibra8on	
  Dimension	
  

Theorem.  For	
  losses	
  L	
  whose	
  columns	
  can	
  be	
  	
  
obtained	
  from	
  one	
  another	
  by	
  permu8ng	
  entries,	
  	
  
 

 CCdim(L)  ≥  rank(L) - 2 

[Ramaswamy	
  &	
  Agarwal,	
  2012;	
  2014]	
  



1 2 3 n 
1 
2 
3 

n 

Example:	
  Mul8class	
  0-­‐1	
  Classifica8on	
  

Y = Ŷ = [n]
n = k > 2



1 2 3 n 
1 
2 
3 

n 

Example:	
  Mul8class	
  0-­‐1	
  Classifica8on	
  

Y = Ŷ = [n]
n = k > 2

rank(L0-1) = n 



r = 3 

Example:	
  Sequence	
  Predic8on	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  with	
  Hamming	
  Loss	
  	
  

Y = Ŷ = {0,1}r

n = k = 2r



r = 3 

Example:	
  Sequence	
  Predic8on	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  with	
  Hamming	
  Loss	
  	
  

Y = Ŷ = {0,1}r

n = k = 2r

rank(LHam) = r 



r = 3 

Example:	
  Document	
  Ranking	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  with	
  Pairwise	
  Disagreement	
  Loss	
  

Y = {0,1}r,
n = 2r,

Ŷ = Sr
k = r!



r = 3 

Example:	
  Document	
  Ranking	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  with	
  Pairwise	
  Disagreement	
  Loss	
  

Y =Gr,
n = Gr ,

Ŷ = Sr
k = r!

1

2 3

1

2 3



0     1      1     1     1     2    

0     1      2     1     2     3 





r = 3 

Example:	
  Document	
  Ranking	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  with	
  Pairwise	
  Disagreement	
  Loss	
  

Y =Gr,
n = Gr ,

Ŷ = Sr
k = r!

1

2 3

1

2 3



0     1      1     1     1     2    

0     1      2     1     2     3 



rank(LPD) = Θ(r2) 



Applica8on:	
  Stronger	
  Versions	
  of	
  	
  
Recent	
  Results	
  on	
  Non-­‐Existence	
  of	
  
Convex	
  Calibrated	
  Surrogates	
  

(Duchi	
  et	
  al,	
  2010;	
  Calauzenes	
  
et	
  al,	
  2012):	
  no	
  convex	
  

calibrated	
  surrogates	
  for	
  LPD 
in ≤ r dimensions	
  



Applica8on:	
  Stronger	
  Versions	
  of	
  	
  
Recent	
  Results	
  on	
  Non-­‐Existence	
  of	
  
Convex	
  Calibrated	
  Surrogates	
  

(Duchi	
  et	
  al,	
  2010;	
  Calauzenes	
  
et	
  al,	
  2012):	
  no	
  convex	
  

calibrated	
  surrogates	
  for	
  LPD 
in ≤ r dimensions	
  

Our	
  results:	
  no	
  convex	
  
calibrated	
  surrogates	
  for	
  LPD	
  
in	
  < r(r-1)/2 – 2	
  dimensions!	
  	
  



Our	
  Work	
  

Unified	
  Approach	
  for	
  Designing	
  	
  
Convex	
  Calibrated	
  Surrogates	
  for	
  	
  

General	
  Loss	
  Matrices	
  

When	
  is	
  a	
  surrogate	
  
calibrated	
  for	
  L?	
  

What	
  is	
  the	
  smallest	
  
dimension	
  d	
  that	
  supports	
  

a	
  convex	
  calibrated	
  
surrogate	
  for	
  L?	
  

Can	
  we	
  design	
  explicit	
  
low-­‐dimensional	
  
surrogates	
  for	
  L?	
  



Explicit	
  Convex	
  Calibrated	
  Least	
  Squares	
  
Surrogate	
  with	
  d	
  =	
  rank(L) 

[Ramaswamy,	
  Agarwal	
  &	
  Tewari,	
  2013]	
  



Explicit	
  Convex	
  Calibrated	
  Least	
  Squares	
  
Surrogate	
  with	
  d	
  =	
  rank(L) 

[Ramaswamy,	
  Agarwal	
  &	
  Tewari,	
  2013]	
  

ψLS(y,u) = (uj − Ayj )
2

j=1

d

∑

predLS(u) ∈ argmin
ŷ∈[k ]

ujBjŷ
j=1

d

∑



Explicit	
  Convex	
  Calibrated	
  Output	
  Code	
  
Based	
  Surrogate	
  with	
  d	
  =	
  rank(L) 

[Ramaswamy,	
  Babu,	
  Agarwal	
  &	
  Williamson,	
  2014]	
  



Explicit	
  Convex	
  Calibrated	
  Output	
  Code	
  
Based	
  Surrogate	
  with	
  d	
  =	
  rank(L) 

[Ramaswamy,	
  Babu,	
  Agarwal	
  &	
  Williamson,	
  2014]	
  

ψOC(y,u) = (Cyjφ(1,uj )+ (1−Cyj )φ(−1,uj ))
j=1

d

∑

predOC(u) ∈ argmin
ŷ∈[k ]

λ−1(uj )β jŷ
j=1

d

∑



Explicit	
  Convex	
  Calibrated	
  Output	
  Code	
  
Based	
  Surrogate	
  with	
  d	
  =	
  rank(L) 

[Ramaswamy,	
  Babu,	
  Agarwal	
  &	
  Williamson,	
  2014]	
  

ψOC(y,u) = (Cyjφ(1,uj )+ (1−Cyj )φ(−1,uj ))
j=1

d

∑

Strictly proper composite 
binary surrogate 



Explicit	
  Convex	
  Calibrated	
  Output	
  Code	
  
Based	
  Surrogate	
  with	
  d	
  =	
  rank(L) 

[Ramaswamy,	
  Babu,	
  Agarwal	
  &	
  Williamson,	
  2014]	
  

ψOC(y,u) = (Cyjφ(1,uj )+ (1−Cyj )φ(−1,uj ))
j=1

d

∑

Code matrix 
constructed from A 



Explicit	
  Convex	
  Calibrated	
  Output	
  Code	
  
Based	
  Surrogate	
  with	
  d	
  =	
  rank(L) 

[Ramaswamy,	
  Babu,	
  Agarwal	
  &	
  Williamson,	
  2014]	
  

predOC(u) ∈ argmin
ŷ∈[k ]

λ−1(uj )β jŷ
j=1

d

∑

Inverse link 
associated with φ	





Explicit	
  Convex	
  Calibrated	
  Output	
  Code	
  
Based	
  Surrogate	
  with	
  d	
  =	
  rank(L) 

[Ramaswamy,	
  Babu,	
  Agarwal	
  &	
  Williamson,	
  2014]	
  

predOC(u) ∈ argmin
ŷ∈[k ]

λ−1(uj )β jŷ
j=1

d

∑

Obtained from B 



Current/Future	
  Direc8ons	
  
 

Relaxing	
  universal	
  
consistency	
  requirement	
  

Relaxing	
  exact	
  consistency	
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  consistency	
  
requirement	
  

Complex	
  performance	
  
measures	
  

Relaxing	
  universal	
  
consistency	
  requirement	
  



Surrogates	
  for	
  	
  
Mul8class	
  0-­‐1	
  Classifica8on	
  

ψCS(y,u) =max
ŷ∈[k ]

(1− (uy −uŷ ))+
predCS(u) ∈ argmax

ŷ∈[k ]
uŷ

n-­‐dimensional	
  
surrogate	
  

Popular	
  Crammer-­‐Singer	
  surrogate:	
  

[Crammer	
  &	
  Singer,	
  2001]	
  



Surrogates	
  for	
  	
  
Mul8class	
  0-­‐1	
  Classifica8on	
  

Crammer-­‐Singer	
  algorithm	
  is	
  0-­‐1	
  
consistent	
  only	
  for	
  	
  

distribu8ons	
  D	
  sa8sfying	
  
`dominant-­‐label’	
  condi8on	
  

[Zhang,	
  2004;	
  Tewari	
  &	
  Bartlel,	
  2007]	
  



Surrogates	
  for	
  	
  
Mul8class	
  0-­‐1	
  Classifica8on	
  

Under	
  dominant-­‐label	
  
condi8on,	
  log n	
  

dimensions	
  suffice!	
  

[Ramaswamy,	
  Tewari	
  &	
  Agarwal,	
  2015]	
  



Least	
  Squares	
  surrogate:	
  

[Ramaswamy,	
  Agarwal	
  &	
  Tewari,	
  2013]	
  

Surrogates	
  for	
  Document	
  Ranking	
  
with	
  Pairwise	
  Disagreement	
  Loss	
  

Θ(r2)-­‐
dimensional	
  
surrogate	
  

ψLS(y,u) = (uij − yij )
2

j≠i
∑

i=1

r

∑

predLS(u) ∈ argmin
σ∈Sr

uij1(σ (i)>σ ( j))
j≠i
∑

i=1

r

∑



[Ramaswamy,	
  Agarwal	
  &	
  Tewari,	
  2013]	
  

Surrogates	
  for	
  Document	
  Ranking	
  
with	
  Pairwise	
  Disagreement	
  Loss	
  

Resul8ng	
  algorithm	
  is	
  
universally	
  consistent,	
  BUT…	
  



Least	
  Squares	
  surrogate:	
  

[Ramaswamy,	
  Agarwal	
  &	
  Tewari,	
  2013]	
  

Surrogates	
  for	
  Document	
  Ranking	
  
with	
  Pairwise	
  Disagreement	
  Loss	
  

ψLS(y,u) = (uij − yij )
2

j≠i
∑

i=1

r

∑

predLS(u) ∈ argmin
σ∈Sr

uij1(σ (i)>σ ( j))
j≠i
∑

i=1

r

∑

MWFAS	
  !!!	
  



[Ramaswamy,	
  Agarwal	
  &	
  Tewari,	
  2013]	
  

Surrogates	
  for	
  Document	
  Ranking	
  
with	
  Pairwise	
  Disagreement	
  Loss	
  

Efficient	
  implementa8on	
  
under	
  `DAG’	
  condi8on	
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Relaxing	
  exact	
  consistency	
  
requirement	
  



Approximate	
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  Space	
   Model	
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Approximate	
  Consistency	
  via	
  
Approximately	
  Calibrated	
  Surrogates	
  

[Ramaswamy	
  &	
  Agarwal,	
  in	
  progress]	
  

Training	
  sample	
  size	
  

Ge
ne

ra
liz
a8

on
	
  

er
ro
r	
  

Bayes error�

0 

α � (Bayes error) �
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Example:	
  F-­‐Measure	
  
 
Y = Ŷ = {±1}

FD[h]=
2 ⋅PrecD[h]⋅RecD[h]
PrecD[h]+RecD[h]

[Narasimhan,	
  Vaish	
  &	
  Agarwal,	
  2014;	
  	
  
Narasimhan,	
  Ramaswamy	
  &	
  Agarwal,	
  2015]	
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Summary	
  

Given	
  a	
  learning	
  problem	
  defined	
  by	
  
a	
  loss	
  matrix	
  L,	
  need	
  L-­‐consistent	
  

learning	
  algorithms	
  

Many	
  popular	
  
learning	
  algorithms	
  
minimize	
  a	
  convex	
  
surrogate	
  loss	
  

Our	
  work:	
  	
  
General	
  methodology	
  
for	
  designing	
  convex	
  
calibrated	
  surrogates	
  

for	
  any	
  loss	
  L	
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Open	
  Ques8ons	
  

General	
  characteriza8on	
  of	
  
convex	
  calibra8on	
  

dimension	
  of	
  a	
  loss	
  L?	
  

Convex	
  calibrated	
  surrogates	
  
with	
  d = CCdim(L) ?	
  

Other	
  structure	
  in	
  
loss	
  matrices?	
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