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The Big Picture

I Importance sampling goes back to Marshall, Ulam, Von
Neumann in the late forties

I Physicists devised many clever variations but with limited
analysis

I Siegmund (1976) first provably efficient implementation for
rare level crossing probabilities in the light tailed settings.

I Since then, enormous activity in 80’s and 90’s on importance
sampling for rare event simulation in light tailed settings.
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I Asmussen and Binswanger (1997) first to consider estimating
P(Sn > b) when increments are heavy-tailed using conditional
Monte Carlo.

I Negative results for state independent methods in importance
sampling (2007)

I Substantial literature since then focussing on complex state
dependent methods

I We propose that a Divide and Conquer approach allows
simpler state-independent methods to work
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Basic assumption

I Let Sn =
∑n

i=1 Xi where Xi are i.i.d.

I Tail distribution of Xi is regularly varying:

P(Xi > x) =
L(x)

xα
,

for α > 1, where L(x) is a slowly varying function:

lim
x→∞

L(tx)/L(x) = 1

for all t > 0.

I E.g., L(x) is a constant or L(x) = log(|x |)y for y ∈ <.
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The rare event probabilities considered

We develop state independent efficient estimation methodologies
for

1 Large deviation probabilities P{Sn > na} for a > 0 and
EXi = 0.

2 Level crossing probabilities P{supn Sn > b) as b ↗∞. where
EXi < 0.
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The rare event probabilities considered ...

3 Level crossing in a busy cycle P{supn≤τ Sn > b) where
EXi < 0, and τ = inf{n ≥ 1 : Sn < 0}.

4 Linear process large exceedance probability

P(
∞∑
k=1

akXk > b)

where {Xk} are mean zero, i.i.d., regularly varying, ak ≥ 0,∑
k a

2
k <∞.
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Applications: Ruin probability in insurance

I {Ci} - i.i.d. claim value process; {Ai} - i.i.d. interarrival
times; p - deterministic premium rate and b - initial capital.

I Xi = Ci − pAi is the net loss between claims i − 1 and i .
Typically, EXi < 0. P{supn Sn > b) denotes the ruin
probability.
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Naive estimation of γn = P(Sn > na), a > 0

I Draw m independent samples I1, . . . , Im of I (Sn > na), then
the naive estimator

1

m

m∑
i=1

Ii → γn as m→∞.

I For ratio of standard deviation to mean of the estimator to be
ε, need

ε =

√
(1− γn)γn/m

γn
≈ 1/

√
γnm

so that

m ≈ 1

γn ε2

implying that m→∞ as γn → 0.
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Estimation of γn = P(Sn > na), a > 0

I More generally, for a sequence of unbiased estimators {Zn} of
{γn}, number of simulation runs needed to get ε relative error

m =

(
Var(Zn)

ε2γ2
n

)



Efficiency notions of algorithms

I Weak efficiency: if {Zn} such that Var(Zn) = O(γ2−ε
n ), ∀ε > 0

⇒ m is O(γ−εn ) ∀ε > 0. (e.g., γn = e−n, Var(Zn) = n5e−2n).

I Strong efficiency: Var(Zn) = O(γ2
n), then m remains bounded

as n↗∞ (bounded number of samples no matter how
rare the probability).

I Asymptotically vanishing relative error: Var(Zn) = o(γ2
n)

that is, m vanishes asymptotically (asymptotically, a single
sample gives the desired accuracy).
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Abstract view of importance sampling

I Consider

P(A) =
∑
ω∈A

P(ω) =
∑
ω∈A

L(ω)P∗(ω) = E ∗(LI (A))

where

L(ω) =
P(ω)

P∗(ω)
.

I Average of independent samples of L× I (A) under P∗ give an
unbiased estimator of P(A).
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I Variance equals

E ∗[L2I (A)]− P(A)2 =
∑
ω∈A

P(ω)2

P∗(ω)
− P(A)2

I Zero variance under the conditional measure

P∗(ω) =
P(ω)

P(A)

for ω ∈ A and zero otherwise.
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Importance sampling to estimate γn := P{Sn > na}

I Let f denote the pdf of Xi

I Draw samples of Xi from suitably chosen density functions
f̃Xi |Xi−1

.

I Unbiased estimator of γn along sample (x1, x2, . . . , xn) is given
by

Zn =
n∏

i=1

f (xi )

f̃Xi |Xi−1=xi−1
(xi )

I (
n∑

i=1

xi > na).

I Take sample average of m independent samples of Zn.
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State-dependent and independent importance sampling

I If the distribution of Xi depends on {X1, . . . ,Xi−1}, the
method is state-dependent

I If no such dependence exists and the samples of
{Xi : 1 ≤ i ≤ n} can be drawn independently, then we call it
state-independent

I Typically, easier to generate samples using state-independent
methods
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Zero Variance Estimator is State Dependent

I Under conditional measure

f̃ (x1, . . . , xn) =

∏n
i=1 f (xi )

P(Sn > na)
I (

n∑
i=1

xi > na).

I Set

f̃Xi |Xi−1=xi−1
(x) =

f (x)P(Sn > na|Si = si−1 + x)

P(Sn > na|Si−1 = si−1)

I This is a zero variance estimator as along {
∑n

i=1 xi > na}

n∏
i=1

f (xi )

f̃Xi |Xi−1=xi−1
(xi )

= P(Sn > na).

It is state-dependent.
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Estimating γn := P{Sn > na} for light tailed increments

I When these Xi are light-tailed, exponential twisting based
importance sampling methods are provably successful. Xi

remain independent under the importance sampling measure
(Sadowsky and Bucklew 1990, 91)

I Samples (x1, . . . , xn) drawn for increments from the
exponentially twisted density:

f̂ (x) = eθax−Λ(θa)f (x)

for appropriately chosen θa > 0, where Λ(θ) = log E [eθX ].
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I Simulation output equals

exp(−θa
n∑

i=1

xi + nΛ(θa))I (
n∑

i=1

xi > na)

≤ exp(−n(θaa− Λ(θa)))

and the estimator is shown to be weakly efficient.

I Can show that as n→∞, the zero variance density

f̃Xi |Si−1=s(x) =
f (x)P(Sn > na|Si = s + x)

P(Sn > na|Si−1 = s)
→ eθax

E[eθaX ]
f (x).

I For heavy tailed rv, exponential twisting no longer
feasible as E [eθX ] =∞ for θ > 0.
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Negative result for P{supn≤τ Sn > b), Bassamboo, J, Zeevi 07

I Algorithm - Under importance sampling (X1, . . . ,Xτ ) are iid.

I Result - Weakly efficient state independent measure does not
exist.

𝑋1 > 𝑏  implies 𝐹  ∗(𝑏) ≫ 𝐹 (b)  
   
 
Then   
 

𝐹∗ 𝑎2 − 𝐹∗ 𝑎1

< 𝐹 𝑎2 − 𝐹 𝑎1   
 

for well chosen 𝑎1 and 𝑎2 

Variance blow up along  
these paths 

time 

X1 large 

0 

b 

time 
0 

b 
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Remaining talk overview

I Motivated by this and the form of the zero variance estimator,
there is large evolving literature that develops complex state
dependent importance sampling methods for efficient
simulation of these probabilities. (Blanchet and Liu 08, 12,
Dupuis, Leder, Wang 07, Blanchet and Glynn 08, Chan, Deng,
Lai 12)

I We propose that by suitably decomposing these probabilities
into a dominant and further residual components, simpler
state-independent importance sampling algorithms can be
devised with a desirable vanishing relative error property.

I When the increments have infinite variance, there is an added
complexity in estimating the level crossing probability as even
the well known zero variance estimator has an infinite
expected termination time.
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I We adapt our algorithms so that this expectation is finite
while the estimators remain strongly efficient.

I We show how our approach may be applied to estimate rare
probabilities such as level crossing in a busy cycle as well as
large exceedance probability of a linear process.

I Numerically, the proposed estimators perform at least as well,
and sometimes substantially better than the existing
state-dependent estimators in the literature.

I Our key contribution thus is to question the prevailing view
that one needs to resort to state-dependent methods for
efficient computation of rare event probabilities involving
large number of heavy-tailed random variables.
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Asymptotics for heavy tailed sums

I Let Mn = max{X1, . . . ,Xn}. For heavy tails, as n↗∞,

P{Sn > na} ∼ P{Mn > na} ∼ nP(X1 > na),

so that

P{Sn > na,Mn ≤ na} = o(nP(X1 > na)).
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I In this set, all Xi are
bounded by na!
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o(nF̄ (na)). Residual term

I exponential twisting is
applicable!

I Given {Mn ≥ na},
{Sn > na} occurs with
probability 1 as n →∞!

I P{Sn > na,Mn ≥ na} ∼
nF̄ (na). Dominant term

I Easy to efficiently simulate
via importance sampling
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Algorithm to estimate dominant P{Sn > na,Mn ≥ na}

I (Chan, Deng, Lai 2012)

1. Choose an index I uniformly at random from {1, . . . , n}

2. For k = 1, . . . , n, generate a realization of Xk from
F (·|Xk ≥ na) if k = I ; otherwise, generate Xk from F (·).
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To estimate residual P{Sn > na,Mn < na}

I On the set {Mn < na}, each Xi is bounded for fixed n; we can
apply exponential twisting!

I IS distribution:f̃ (x) = cne
θnx f (x)1(x ≤ na)

I The estimator:

Zres(n) =
1

cnn
e−θnSnI{Sn>na,Mn<na}

θn =
− log nF̄ (na)

na
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Theorem
Above algorithm offers asymptotically vanishing relative error in
the estimation of P{Sn ≥ na} as n↗∞. The results generalize to

na replaced by bn ≥ c̃n
1
2

+ε for any positive constant c̃ and ε.



Proposed method for P(supn≥1 Sn > b)



Level crossing probability: Big jump principle on fluid scale
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P(sup
n≥1

Sn > b) = P(τb <∞) ∼
∞∑
n=1

P(Xn > b + (n − 1)µ).



Estimating level crossing probability

I Naive simulation no longer feasible

I We partition and divide

P(τb <∞) =
∑
k≥1

P(nk−1 < τb ≤ nk)

=
∑
k≥1

P(nk−1 < τb ≤ nk)

pk
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= E

(
P(nK−1 < τb ≤ nK )
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Approximate zero variance randomization

P(τb <∞) = E

(
P(nK−1 < τb ≤ nK )

pK

)

I If we know P(nk−1 < τb ≤ nk) and select

pk =
P(nk−1 < τb ≤ nk)

P(τb <∞)

then the estimator has zero variance.

I We know
P(nk−1 < τb ≤ nk) ∼

∑nk
i=nk−1+1 P(Xi > b + (i − 1)µ).

I Use these approximations to generate K .
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For P(nk−1 < τb ≤ nk) further divide and ...

I The dominant event Ak ∩ {nk−1 < τb ≤ nk}

Ak =

nk⋃
nk−1+1

{Xi > b + (i − 1)µ}

I Residual events Bk ∩ {nk−1 < τb ≤ nk} where Bk denotes all
X ′i s truncated.

I and Ck ∩ {nk−1 < τb ≤ nk} where Ck denotes unsuccessful
big jumps early on.
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1. Select an index J: Pr{J = n} = F̄ (b+(n−1)µ)∑nk
i=nk−1+1 F̄ (b+(i−1)µ)

, for

nk−1 < n ≤ nk .

2. Simulate the increment Xn from F (·|Xn ≥ b + (n − 1)µ), if n = J;
otherwise, simulate Xn from F (·), for any n ≤ nk .



Simulating {nk−1 < τb ≤ nk ,Ak}

Time	



R
an

do
m

 W
al

k	



0	



b	



…	



n1	

 n2	

 nk-1	

 nk	



J	



1. Select an index J: Pr{J = n} = F̄ (b+(n−1)µ)∑nk
i=nk−1+1 F̄ (b+(i−1)µ)

, for

nk−1 < n ≤ nk .

2. Simulate the increment Xn from F (·|Xn ≥ b + (n − 1)µ), if n = J;
otherwise, simulate Xn from F (·), for any n ≤ nk .



Simulating {nk−1 < τb ≤ nk ,Bk}

Time	



R
an

do
m

 W
al

k	



0	



b	



…	



n1	

 n2	

 nk-1	

 nk	



I Sample X1, . . . ,Xτb∧nk independently from appropriate exponentially
twisted distribution.
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Some results

I Theorem
The family of unbiased estimators (Z (b) : b > 0) achieves
asymptotically vanishing relative error for the computation of
P{τb <∞}, as b ↗∞; that is:

lim
b→∞

Var [Z (b)]

P{τb <∞}2
= 0.

I Theorem
If F̄ (·) is regularly varying with index α > 2, under the proposed
algorithm, the computational effort νb:

E [νb] ≤ r

µ(α− 2)
b, as b ↗∞.



Some results

I Theorem
The family of unbiased estimators (Z (b) : b > 0) achieves
asymptotically vanishing relative error for the computation of
P{τb <∞}, as b ↗∞; that is:

lim
b→∞

Var [Z (b)]

P{τb <∞}2
= 0.

I Theorem
If F̄ (·) is regularly varying with index α > 2, under the proposed
algorithm, the computational effort νb:

E [νb] ≤ r

µ(α− 2)
b, as b ↗∞.



Infinite Variance 1 < α < 2

I For tails F̄ (·) with regularly varying index 1 < α < 2, we have
that E[τb|τb <∞] =∞; that is, the zero-variance measure
has infinite expected termination time!

I The proposed {pk} asymptotically match the zero variance
measure

I Can see that infinite expected termination time for the
proposed algorithm for 1 < α < 2.
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For 1.5 < α < 2

I Let β ∈ [2, 2α− 1).

I Set pk proportional to

nk∑
n=nk−1+1

P(Xn > b + (n − 1)µ)

(b + (n − 1)µ)β−α
.

I Theorem
With above chosen randomization probabilities

1. strong efficiency: limb→∞
Var[Z(b)]
P{τb<∞}2 <∞, and

2. finite expected termination time: E[νb] ≤ r+o(1)
µ(β−2)b, as b ↗∞.
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For 1 < α < 1.5, an impossibility result

I Theorem
If the tail index α < 1.5, there does not exist an assignment of
(pk , nk : k ≥ 1) such that both EQ [Z 2(b)] and EQ [νb] are
simultaneously finite.

I Similar result by Blanchet and Liu 2012, in a different
state-dependent setting



Level Crossing in a Busy Cycle
.

P(supn≤τ Sn > b)



Divide and conquer!

I (Xi : i ≥ 1) are i.i.d, negative mean, random variables with
regularly varying tail. Sn =

∑n
i=1 Xi .

I

τ = inf{n ≥ 1 : Sn < 0}.

τb = inf{n ≥ 1 : Sn ≥ b}.

I Probability of interest

P(max
k≤τ

Sk > b) = P(τb < τ).

I The following decomposition is easily seen

P(τb < τ) = F̄ (b)E (τb∧τ) +P(τb < τ,max
k≤τb

Xk < b).



Estimating large deviations probability
for linear processes

.
P(
∑

k akXk > b)



I Probability of interest P(
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k akXk > b) for large b, where ak
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I Well known that

P(
n∑

k=1

akXk > b) ∼
n∑

k=1

P(akXk > b)

I Can set {pn} and develop fast simulation methods for

P(
n∑

k=1

akXk > b)− P(
n−1∑
k=1

akXk > b) =

to achieve vanishing relative error.
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Numerical experiment: P(Sn > n)

X = ΛR, P{Λ > x} = min(1, 1
x4 ),R ∼ Laplace(1)

n True value Point estimate CV∗ of Prop. Algo CV of Algo BL
100 2.21 ×10−5 2.17×10−5 1.9 4.7
500 1.04 ×10−7 1.05×10−7 0.7 4.1
1000 1.25 ×10−8 1.29×10−8 0.6 3.8

Table: Comparing proposed algorithm with that of Blanchet and Liu
(2008). Sample average of 10,000 samples

∗Coefficient of variation, CV = Standard deviation of the estimator
Mean of the estimator

In addition to variance reduction, the proposed algorithm
requires much less computational effort in generating
samples (due to state independence). For common range of
input parameters, it runs at least 100 times faster than the
existing state-dependent methods



Conclusion

I Revisited the problem of efficient simulation of the rare large
deviations as well as the level crossing probability of a random walk.

I Showed that simple state-independent importance sampling
methods, that are at least as efficient as the existing
state-dependent methods, can be devised.

I Devised efficient schemes for large exceedance for a linear process as
well as for random walk in a busy cycle.

I Our approach relied on partitioning the rare event of interest into
elementary events that were amenable to straight forward
state-independent importance sampling methods.

I We expect this approach will generalize to more complex,
multi-dimensional problems, and for similar problems involving
Weibull-type sub-exponential tail distributions.
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