Testing and correcting distributions over big domains

Ronitt Rubinfeld MIT and Tel Aviv University

Survey

Testing probability distributions underlying aggregate data [Canonne R.]

Sampling Correctors [Canonne Gouleakis R.]

What properties do your big distributions have?

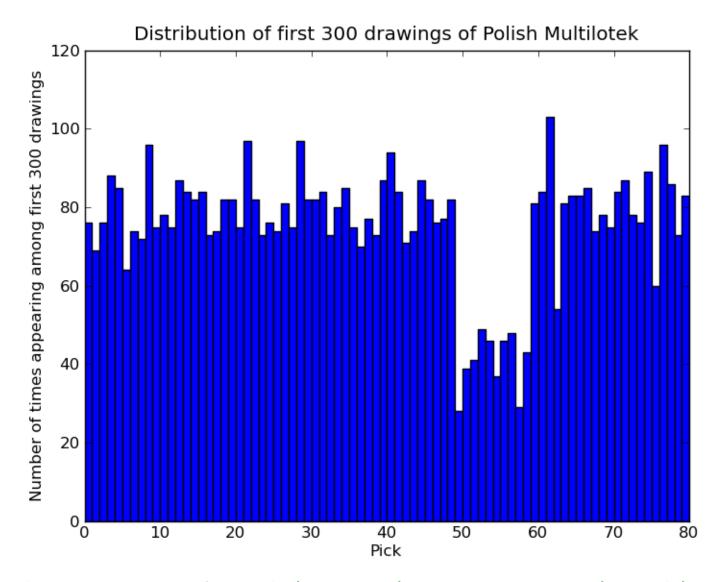
Is it independent?

Is it uniform?

Cemelet's =

Is the lottery unfair?

 From Hitlotto.com: Lottery experts agree, past number histories can be the key to predicting future winners.



True Story!

- Polish lottery Multilotek
 - Choose "uniformly" at random distinct 20 numbers out of 1 to 80.
 - Initial machine biased
 - e.g., probability of 50-59 too small

• Past results:

http://serwis.lotto.pl:8080/archiwum/wyniki_wszystkie.php?id_gra=2

Thanks to Krzysztof Onak (pointer) and Eric Price (graph)

New Jersey Pick 3,4 Lottery

- New Jersey Pick *k* (=3,4) Lottery.
 - Pick *k* digits in order.
 - *10^k* possible values.
 - Assume lottery draws iid
- Data:
 - Pick 3 8522 results from 5/22/75 to 10/15/00
 - χ^2 -test gives 42% confidence
 - Pick 4 6544 results from 9/1/77 to 10/15/00.
 - fewer results than possible values
 - χ^2 -test gives no confidence

Distributions on BIG domains

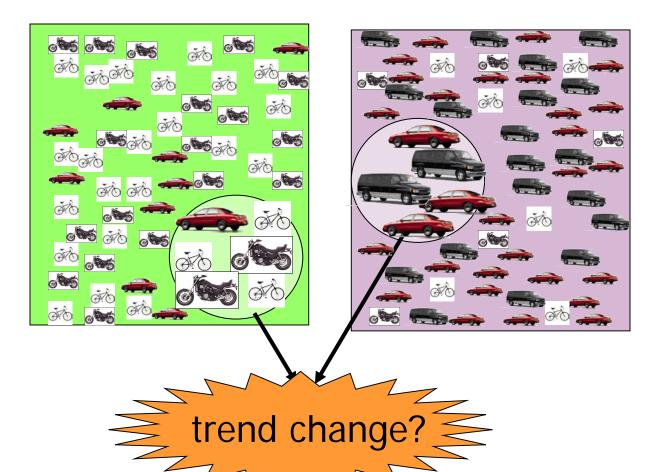
- Given samples of a distribution, need to know, e.g.,
 - entropy
 - number of distinct elements
 - "shape" (monotone, bimodal,...)
 - closeness to uniform, Gaussian, Zipfian...
 - Ability to generate the distribution?
- No assumptions on shape of distribution
 - i.e., smoothness, monotonicity, normal distribution,...
- Considered in statistics, information theory, machine learning, databases, algorithms, physics, biology,...

Key Question

- How many samples do you need in terms of domain size?
 - Do you need to estimate the probabilities of each domain item?
 - -- OR --
 - Can sample complexity be *sublinear* in size of the domain?

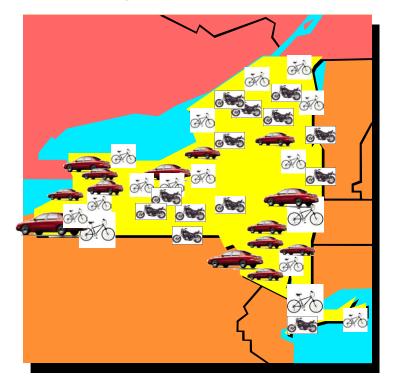
Rules out standard statistical techniques

Our Aim:


Algorithms with sublinear sample complexity

Some other interesting properties...

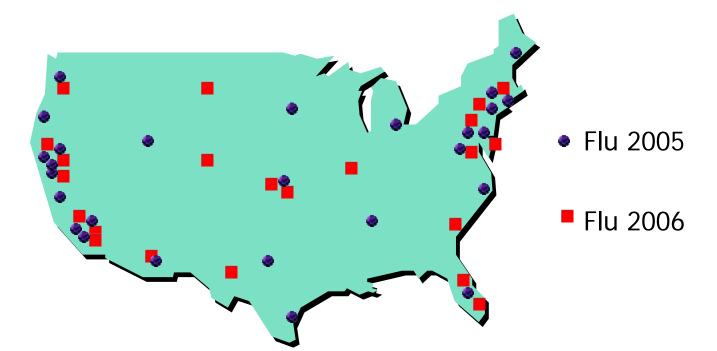
Testing closeness of two distributions:


Transactions of 20-30 yr olds

Transactions of 30-40 yr olds

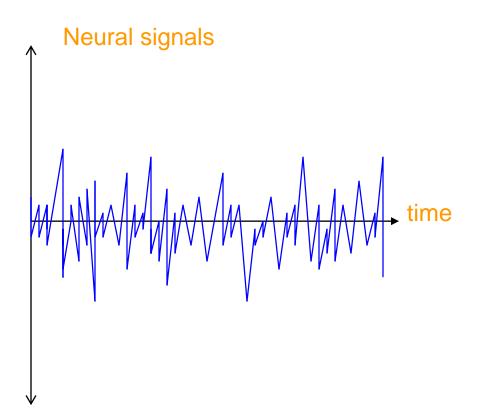
Testing Independence:

Shopping patterns:



Independent of zip code?

Outbreak of diseases

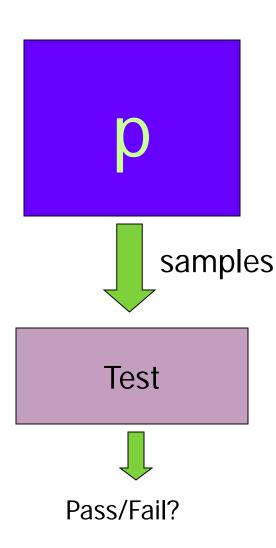

- Similar patterns?
- Correlated with income level?
- More prevalent near large airports?

Information in neural spike trails

[Strong, Koberle, de Ruyter van Steveninck, Bialek '98]

- Each application of stimuli gives sample of signal (spike trail)
- Entropy of (discretized) signal indicates which neurons respond to stimuli

Compressibility of data

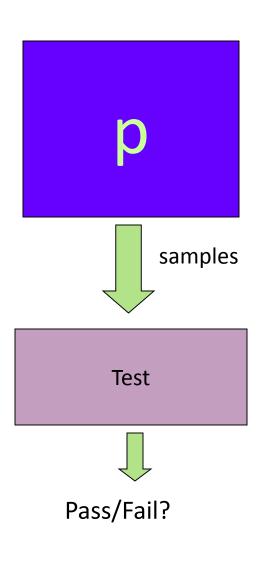

Distribution property testing in algorithm design

Testing expansion, rapid mixing and cluster structure

[Goldreich Ron] [Batu Fortnow Rubinfeld Smith White] [Czumaj Sohler] [Kale Seshadri] [Nachmias Shapira][Czumaj Peng Sohler]

• Testing graph isomorphism [Fisher Matsliah] [Onak Sun]

Our usual model:


p is arbitrary black-box distribution over [*n*], generates iid samples.

• Sample complexity in terms of *n*?

Similarities of distributions

- Are *p* and *q* close or far?
 - q is known to the tester
 - q is uniform
 - *q* is given via samples

Is p uniform?

 Theorem: ([Goldreich Ron] [Batu Fortnow R. Smith White] [Paninski][Valiant Valiant 14]) Sample complexity of distinguishing p = Ufrom $||p - U||_1 > \varepsilon$ is $\theta(n^{1/2})$ $\left|\left|p - U\right|\right|_{1} = \Sigma \left|p_{i} - \frac{1}{n}\right|$

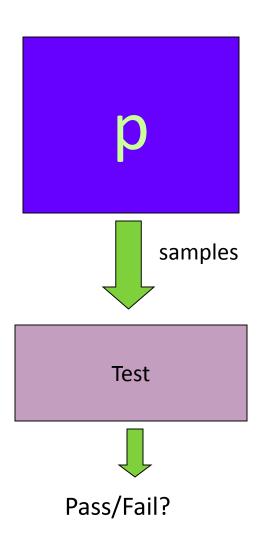
Upper bound for L₂ distance [Goldreich Ron]

• L₂ distance (squared): $||p-q||_2^2 = \sum (p_i - q_i)^2$

•
$$||p-U||_{2}^{2} = \Sigma(p_{i}-1/n)^{2}$$

= $\Sigma p_{i}^{2} - 2\Sigma p_{i}/n + \Sigma 1/n^{2}$
= $\Sigma p_{i}^{2} - 1/n$

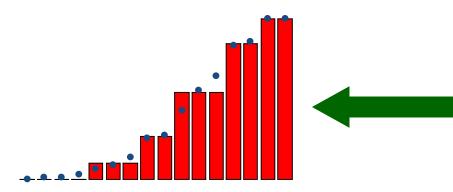
 Estimate collision probability to estimate L₂ distance from uniform

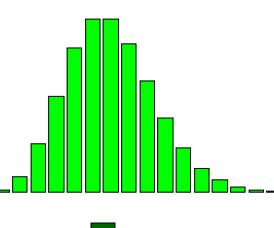

Testing uniformity [GR][BFRSW]

- Upper bound: Estimate collision probability + bound $L_{\!\infty}\,norm$
 - Issues:
 - Collision probability of uniform is 1/n
 - Pairs not independent
 - Relation between L₁ and L₂ norms
 - Comment: [P][VV14] use different estimator
- Easy lower bound: $\Omega(n^{\frac{1}{2}})$
 - Can get Ω (n^{1/2}/ ε^2) [P]

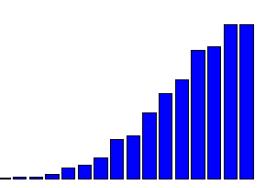
Back to the lottery...

plenty of samples!

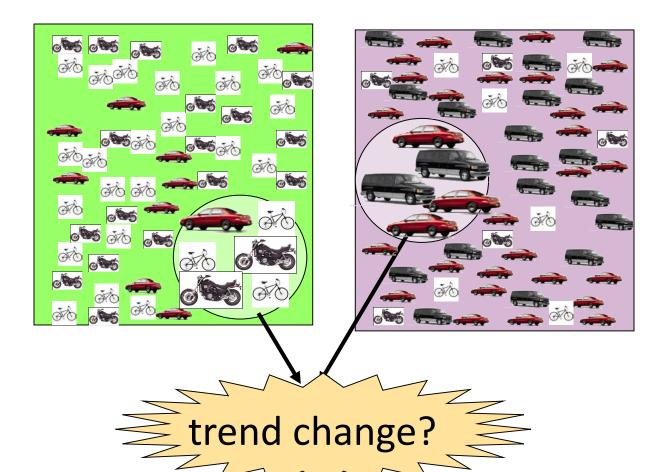

Is p uniform?

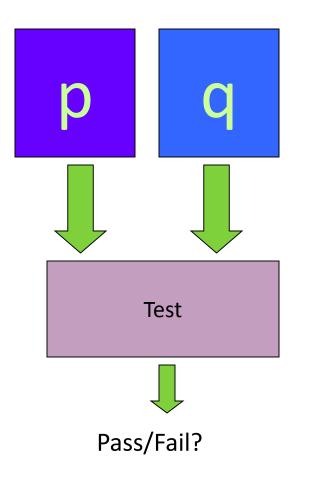


- Theorem: ([Goldreich Ron][Batu Fortnow R. Smith White] [Paninski]) Sample complexity of distinguishing *p=U* from |p-U|₁>ε is θ(n^{1/2})
- Nearly same complexity to test if p is any known distribution [Batu Fischer Fortnow Kumar R. White][Onak]: "Testing identity"


Testing identity via testing uniformity on subdomains: q (known)

- (Relabel domain so that q monotone)
- Partition domain into O(log n) groups, so that each partition almost "flat" --
 - differ by <(1+ε) multiplicative factor
 - *q* close to uniform over each partition
- Test:
 - Test that p close to uniform over each partition
 - Test that *p* assigns approximately correct total weights to each partition



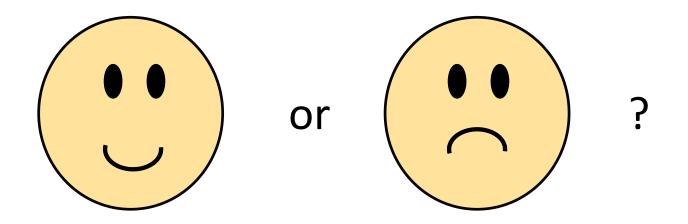

Testing closeness of two distributions:

Transactions of 20-30 yr olds

Transactions of 30-40 yr olds

Testing closeness

Theorem: ([BFRSW] [P. Valiant] [Chan Diakonikolas Valiant Valiant]) Sample complexity of distinguishing p=qfrom $||p-q||_1 > \varepsilon$ is $\theta(n^{2/3})$



Why so different?

- Collision statistics are all that matter
- Collisions on "heavy" elements can hide collision statistics of rest of the domain
- Construct pairs of distributions where heavy elements are identical, but "light" elements are either identical or very different

Approximating the distance between two distributions?

Distinguishing whether $|p-q|_1 < \varepsilon$ or $|p-q|_1$ is $\Theta(1)$ requires $\Theta(\frac{n}{\log n})$ samples [V08, G. Valiant P. Valiant 11]

Collisions tell all

- Algorithms:
 - Use collisions to determine "wrong" behavior
- Lower bounds:
 - For symmetric properties, collision statistics are only relevant information
 - Need new analytical tools since not independent

What about joint properties of many distributions?

Some questions (and answers):

- Are they all equal?
- Can they be clustered into k groups of similar distributions?
- Do they all have the same mean?

See [Levi Ron R. 2011, Levi Ron R. 2012]

More properties:

- Independence and limited independence: [Batu Fischer Fortnow Kumar R. White] [Levi Ron R.][Alon Andoni Kaufman Matulef R. Xie] [Haviv Langberg]
- Entropy, support size and other information theoretic quantities [Batu Dasgupta Kumar R.] [Guha McGregor Venkatasubramanian] [Raskhodnikova Ron Shpilka Smith] [Valiant]
- Monotonicity over general posets [Batu Kumar R.] [Bhattacharyya Fischer R. P. Valiant]
- K-histogram distributions [Levi Indyk R.]
- *K*-modal distributions [Daskalakis Diakonikolas Servedio][Daskalakis Diakonikolas Servedio Valiant Valiant]
- Poisson Binomial Distributions [Daskalakis Diakonikolas Servedio]
 And lots more!

Many other properties to consider!

- Higher dimensional flat distributions
- Mixtures of *k* Gaussians
- "Junta"-distributions
- Generated by a small Markovian process

•

Dependence on *n*

- o(n)
- But usually n^{α} for some $0 < \alpha < 1$
- Is this good or bad? but still daunting!

nontrivial

Getting past the lower bounds

- Restricted classes of distributions
 - Structured distributions
 - Competitive closeness testing [Acharya Das Jafarpour Orlitsky Pan Suresh] [Valiant Valiant 14]
- Other distance measures
- More powerful query models

Structured distributions

- Can we take advantage of special structure of the distribution?
 - E.g., monotone/k-modal distributions, Poisson Binomials, Sums of independent integer random variables, ... BEAUTIFUL STRUCTURAL THEOREMS!

Other distance measures:

- L2 distance
- Information theoretic distances [Guha McGregor Venkatasubramanian]
- Earth Mover Distance [Doba Nguyen² R.]

More power to the tester!

What kind of queries?

- Samples of distribution
- Queries to probability density function (pdf-queries): "What is p(i)?"
- Queries to cumulative distribution function (cdfqueries): "What is p([1..x])?" [Canonne R.]
- Samples of conditional distribution [Chakraborty Fischer Goldhirsh Matsliah] [Canonne Ron Servedio]
 - Which conditioning predicates?
 - Arbitrary subsets, ranges, pairs of domain elements...

Example 1:

Distribution comes from a file that has already been sorted

1,1,1,1,2,4,4,10,11,13,13,13,13,13,15,99,99,253,666,666,...

- Samples in O(1) time
- pdf queries in $O(\log n)$ time
- cdf queries in $O(\log n)$ time

Example 2:

Google *n*-gram data

- Frequencies (Pdf) for each sequence of n words
- Samples of sequences

Example 3:

Database provides extra support

- E.g. Needletail [Kim Madden Parameswaran]
 - Samples
 - Conditional samples for simple predicates
 - i.e. random entry x s.t. $x_i = r$

Can it help to have pdf queries (rather than samples)? YES!

$$\frac{2}{n}, 0, 0, 0, 0, \frac{2}{n}, \frac{2}{n}, \frac{2}{n}, \frac{2}{n}, 0, 0, \frac{2}{n}, 0, \frac{2}{n}, \frac{2}{n}, \frac{2}{n}, 0, 0, 0, 0, \frac{2}{n}, \frac{2}{n}, 0, 0, 0, 0, \frac{2}{n}, \frac$$

Testing uniformity?

Samples only: need \sqrt{n} Given pdf queries: O(1/ ϵ)

Are probability distribution function (pdf) queries better than samples?

No!

000000000140014000000140014000000

What is entropy?

Given samples: estimate quickly Given pdf queries: look for needles in haystack

Can we multiplicatively approximate entropy from samples?

- In general, no!
 - ≈0 entropy distributions are hard to distinguish with any number of samples
- entropy big enough:
 - γ -multiplicatively approximate the entropy with $\theta(n^{1/\gamma^2})$ samples (if entropy > $\Omega(\gamma)$) [Batu Dasgupta R. Kumar] [Valiant]
 - better if support smaller [Brautbar Samorodnitsky]

Can we multiplicatively approximate entropy from other queries?

- From pdf queries (only): $\Omega(n)$ for any approximation
- From pdf queries + samples:
 θ(log n)

[BDKR][Guha McGregor Venkatasubramanian]

What about additive estimates of entropy?

• Samples only: $\theta(n/\log n)$ [Valiant Valiant]

- Samples + cdf, Samples + pdf: polylog(n)
 [Canonne R]
 - Sample to estimate $E[\log(\frac{1}{p(x)})]$

Closeness of distributions

$O(\frac{1}{\epsilon})$ samples suffice for testing closeness

Relative power of different oracles?

(Samples + pdf) vs. cdf queries [Canonne R.]

- Cdf is pretty powerful:
 - Given samples + cdf, can simulate samples + pdf in 2 queries
 - Given cdf, can simulate samples in O(log n) queries
- What about other direction?
 - Some evidence that cdf queries are more powerful...

Questions for the oracles

- Comparison of powers of different oracle models?
- Approximate queries?
- Improvements to other learning/testing problems in these models?
- What queries should we convince DB systems to implement?

Correcting Distributions [Cannone Gouleakis R.]

Teen drug addiction recovery rates

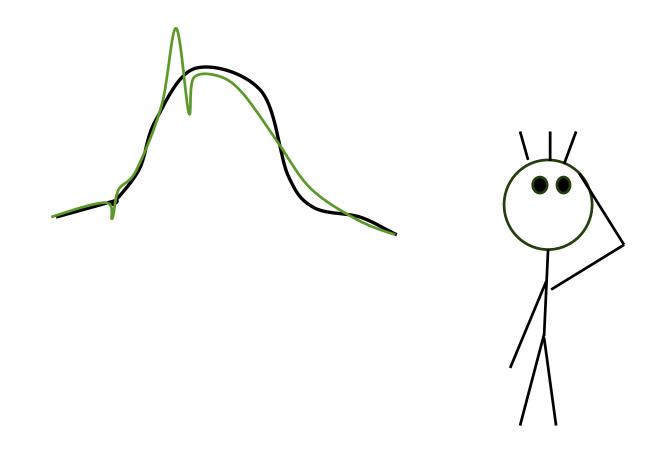
Never received data from the Wallapaloosee community center!

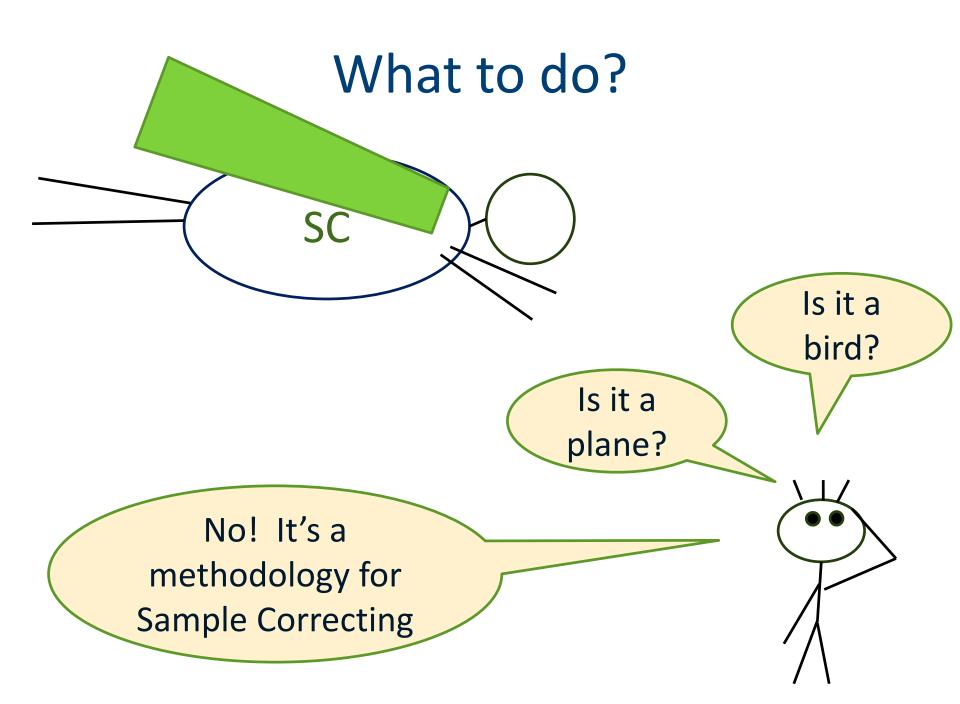
What are the traffic patterns?

Some of the sensors went crazy!

Astronomical data

A meteor shower messed up some of the measurements


Whooping cranes



Correction of location errors for presence-only species distribution models [Hefley, Baasch, Tyre, Blankenship 2013]

What is correct?

What is correct?

What is correct?

Sample corrector assumes that original distribution in class P (e.g., monotone, Lipshitz, *k*-modal,...)

Sample Correctors

 Given: samples of distribution q assumed to be ε-close to class P

> 2. Randomness complexity per output sample of q'?

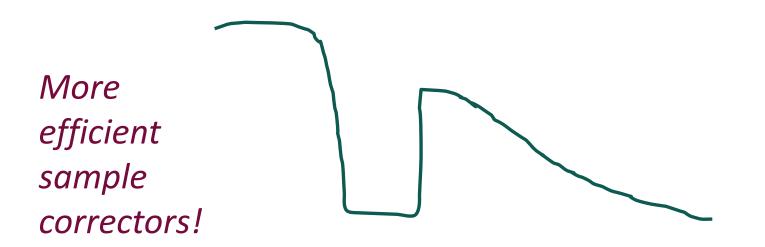
- Output: samples of q' such that
 - q' is ϵ' -close to distribution q
- q' in P . sample complexity per output sample of q'?

An observation

Agnostic learner for distributions in P

Sample corrector for distributions in P

Can we correct with fewer queries than via agnostic learning?


- Learning monotone distribution requires $\Omega(\log n)$ samples [Birge][Daskalakis Diakonikolas Servedio]
- Thm: Exists SC which given p which is $\left(\frac{1}{\log^2 n}\right)$ -close to monotone, uses O(1) samples of p per output sample.

More on correctors, learners and testers

- Corrector turns a learner into an agnostic learner
- Corrector and distance approximator turns a tester into a tolerant tester
 - Gives weakly tolerant monotonicity tester

Special error classes

- Missing data errors p can be expressed as a member of P with a segment of the domain removed
 - E.g. one sensor failure in traffic data

Randomness Scarcity

- Can we correct using little randomness of our own?
 - Generalization of Von Neumann corrector of biased coin
 - Compare to extractors (not the same)
 - For monotone distributions, YES!

What next for correction?

- More examples where correction is easier than learning?
- Other properties?
- Other applications?

Conclusion:

- Distribution testing problems are everywhere
- For many problems, we need a lot fewer samples than one might think!
- Many COOL ideas and techniques have been developed
- Lots more to do!

Thank you