The Contextual Bandits Problem

A New, Fast, and Simple Algorithm

Alekh Agarwal (MSR)
Daniel Hsu (Columbia)
Satyen Kale (Yahoo)
John Langford (MSR)
Lihong Li (MSR)
Rob Schapire (MSR/Princeton)
Example: Ad/Content Placement

• repeat:
 1. website visited by user (with profile, browsing history, etc.)
 2. website chooses ad/content to present to user
 3. user responds (clicks, leaves page, etc.)

• **goal**: make choices that elicit desired user behavior
Example: Medical Treatment

- repeat:
 1. doctor visited by patient (with symptoms, test results, etc.)
 2. doctor chooses treatment
 3. patient responds (recovers, gets worse, etc.)

- goal: make choices that maximize favorable outcomes
The Contextual Bandits Problem

- repeat:
 1. learner presented with context
 2. learner chooses an action
 3. learner observes reward (but only for chosen action)

- goal: learn to choose actions to maximize rewards
The Contextual Bandits Problem

- repeat:
 1. learner presented with context
 2. learner chooses an action
 3. learner observes reward (but only for chosen action)
- goal: learn to choose actions to maximize rewards
- general and fundamental problem: how to learn to make intelligent decisions through experience
Issues

- **classic dilemma:**
 - **exploit** what has already been learned
 - **explore** to learn which behaviors give best results
Issues

- classic dilemma:
 - exploit what has already been learned
 - explore to learn which behaviors give best results
- in addition, must use context effectively
 - many choices of behavior possible
 - may never see same context twice
• classic dilemma:
 • exploit what has already been learned
 • explore to learn which behaviors give best results
• in addition, must use context effectively
 • many choices of behavior possible
 • may never see same context twice
• selection bias: if explore while exploiting, will tend to get highly skewed data
Issues

- classic dilemma:
 - exploit what has already been learned
 - explore to learn which behaviors give best results
- in addition, must use context effectively
 - many choices of behavior possible
 - may never see same context twice
- selection bias: if explore while exploiting, will tend to get highly skewed data
- efficiency
This Talk

• new and general algorithm for contextual bandits
• optimal statistical performance
• far faster and simpler than predecessors
Formal Model

- repeat

 1a. learner observes context x_t

 2. learner selects action $a_t \in \{1, \ldots, K\}$
 3. learner receives observed reward $r_t(a_t)$

• goal: maximize total reward:

$$T \sum_{t=1}^{T} r_t(a_t)$$

• assume pairs (x_t, r_t) chosen at random i.i.d.
Formal Model

• repeat
 1a. learner observes context x_t
 1b. reward vector $r_t \in [0, 1]^K$ chosen (but not observed)
 2. learner selects action $a_t \in \{1, \ldots, K\}$
 3. learner receives observed reward $r_t(a_t)$
Formal Model

• repeat
 1a. learner observes context x_t
 1b. reward vector $r_t \in [0, 1]^K$ chosen (but not observed)
 2. learner selects action $a_t \in \{1, \ldots, K\}$
 3. learner receives observed reward $r_t(a_t)$

• goal: maximize total reward:

$$\sum_{t=1}^{T} r_t(a_t)$$
Formal Model

- repeat
 1a. learner observes context x_t
 1b. reward vector $r_t \in [0, 1]^K$ chosen (but not observed)
 2. learner selects action $a_t \in \{1, \ldots, K\}$
 3. learner receives observed reward $r_t(a_t)$

- goal: maximize total reward:
 \[
 \sum_{t=1}^{T} r_t(a_t)
 \]

- assume pairs (x_t, r_t) chosen at random i.i.d.
Example

<table>
<thead>
<tr>
<th>Context</th>
<th>Actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Male, 50, ...)</td>
<td>1 2 3</td>
</tr>
</tbody>
</table>

\[\text{total reward} = 0.2 + 1.0 + 0.1 + \cdots \]
<table>
<thead>
<tr>
<th>Context</th>
<th>Actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Male, 50, ...)</td>
<td>1.0 0.2 0.0</td>
</tr>
<tr>
<td>Context</td>
<td>Actions</td>
</tr>
<tr>
<td>--------------------</td>
<td>---------</td>
</tr>
<tr>
<td>(Male, 50, ...)</td>
<td>1.0 0.2 0.0</td>
</tr>
</tbody>
</table>
Example

<table>
<thead>
<tr>
<th>Context</th>
<th>Actions</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(Male, 50, ...)</td>
<td>1.0</td>
<td>0.2</td>
<td>0.0</td>
</tr>
</tbody>
</table>

total reward = 0.2 +
Example

<table>
<thead>
<tr>
<th>Context</th>
<th>Actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Male, 50, ...)</td>
<td>1.0</td>
</tr>
<tr>
<td>(Female, 18, ...)</td>
<td>0.2</td>
</tr>
</tbody>
</table>

total reward = 0.2 +
Example

<table>
<thead>
<tr>
<th>Context</th>
<th>Actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>((Male, 50,\ldots))</td>
<td>1.0 0.2 0.0</td>
</tr>
<tr>
<td>((Female, 18,\ldots))</td>
<td>1.0 0.0 1.0</td>
</tr>
</tbody>
</table>

Total reward = 0.2 +
Example

<table>
<thead>
<tr>
<th>Context</th>
<th>Actions</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(Male, 50, ...)</td>
<td>1.0</td>
<td>0.2</td>
<td>0.0</td>
</tr>
<tr>
<td>(Female, 18, ...)</td>
<td>1.0</td>
<td>0.0</td>
<td>1.0</td>
</tr>
</tbody>
</table>

Total reward = 0.2 + 1.0 +
Example

<table>
<thead>
<tr>
<th>Context</th>
<th>Actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>$(Male, 50, \ldots)$</td>
<td>1.0</td>
</tr>
<tr>
<td>$(Female, 18, \ldots)$</td>
<td>1.0</td>
</tr>
<tr>
<td>$(Female, 48, \ldots)$</td>
<td>1.0</td>
</tr>
</tbody>
</table>

Total reward $= 0.2 + 1.0 + $
Example

<table>
<thead>
<tr>
<th>Context</th>
<th>Actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>((Male, 50, \ldots))</td>
<td>1.0</td>
</tr>
<tr>
<td>((Female, 18, \ldots))</td>
<td>1.0</td>
</tr>
<tr>
<td>((Female, 48, \ldots))</td>
<td>0.5</td>
</tr>
</tbody>
</table>

total reward = \(0.2 + 1.0 +\)
Example

<table>
<thead>
<tr>
<th>Context</th>
<th>Actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>$(\text{Male}, 50, \ldots)$</td>
<td>1.0 0.2 0.0</td>
</tr>
<tr>
<td>$(\text{Female}, 18, \ldots)$</td>
<td>1.0 0.0 1.0</td>
</tr>
<tr>
<td>$(\text{Female}, 48, \ldots)$</td>
<td>0.5 0.1 0.7</td>
</tr>
</tbody>
</table>

<p>| |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>\vdots</td>
</tr>
<tr>
<td>\vdots</td>
</tr>
</tbody>
</table>

total reward $= 0.2 + 1.0 + 0.1 + \cdots$
Special Case: Multi-armed Bandit Problem

- no context
- try to do as well as best single action
Special Case: Multi-armed Bandit Problem

- no context
- try to do as well as best single action
 - tacitly assuming there is one action that gives high rewards
 - e.g.: single treatment/ad/content that is right for entire population
Policies

• in contextual bandits setting, can use context to choose actions
• may exist good policy (decision rule) for choosing actions based on context
• in **contextual bandits** setting, can use **context** to choose actions

• may exist good **policy** (decision rule) for choosing actions based on context

• e.g.:

 If \((\text{sex} = \text{male})\) choose action 2
 Else if \((\text{age} > 45)\) choose action 1
 else choose action 3
Policies

- In contextual bandits setting, can use context to choose actions.
- May exist good policy (decision rule) for choosing actions based on context.
- E.g.:

 If \((\text{sex} = \text{male})\) choose action 2

 Else if \((\text{age} > 45)\) choose action 1

 Else choose action 3

- Policy \(\pi : (\text{context } x) \mapsto (\text{action } a)\)
in contextual bandits setting, can use context to choose actions

may exist good policy (decision rule) for choosing actions based on context

e.g.:

If (sex = male) choose action 2
Else if (age > 45) choose action 1
else choose action 3

policy \(\pi : (\text{context } x) \mapsto (\text{action } a) \)

learner generally working with some rich policy space \(\Pi \)

- e.g.: all decision trees ("if-then-else" rules)
Policies

- in **contextual bandits** setting, can use **context** to choose actions
- may exist good **policy** (decision rule) for choosing actions based on context
- e.g.:

 If (sex = male) choose action 2
 Else if (age > 45) choose action 1
 else choose action 3

- **policy** $\pi : (\text{context } x) \mapsto (\text{action } a)$
- learner generally working with some rich **policy space** Π
 - e.g.: all decision trees ("if-then-else" rules)
 - assume Π finite, but typically extremely large
 - tacit assumption:
 \exists (unknown) **policy** $\pi \in \Pi$ that gives high rewards
Learning with Context and Policies

• **goal**: learn through experimentation to do (almost) as well as best $\pi \in \Pi$

• policies may be very **complex** and **expressive**
 \Rightarrow powerful approach
Learning with Context and Policies

- **goal:** learn through experimentation to do (almost) as well as best $\pi \in \Pi$
- policies may be very complex and expressive
 \Rightarrow powerful approach
- **challenges:**
 - Π extremely large
 - need to be learning about all policies simultaneously while also performing as well as the best
 - when action selected, only observe reward for policies that would have chosen same action
 - exploration versus exploitation on a gigantic scale!
Formal Model (*revisited*)

- repeat
 1a. learner observes context x_t
 1b. reward vector $r_t \in [0, 1]^K$ chosen (but not observed)
 2. learner selects action $a_t \in \{1, \ldots, K\}$
 3. learner receives observed reward $r_t(a_t)$
- goal: want high total (or average) reward relative to best policy $\pi \in \Pi$
Formal Model (revisited)

- repeat
 1a. learner observes context x_t
 1b. reward vector $r_t \in [0, 1]^K$ chosen (but not observed)
 2. learner selects action $a_t \in \{1, \ldots, K\}$
 3. learner receives observed reward $r_t(a_t)$
- goal: want high total (or average) reward relative to best policy $\pi \in \Pi$
 - i.e., want small regret:

$$\frac{1}{T} \sum_{t=1}^{T} r_t(a_t)$$

learner’s average reward
Formal Model (revisited)

- repeat
 1a. learner observes context x_t
 1b. reward vector $r_t \in [0, 1]^K$ chosen (but not observed)
 2. learner selects action $a_t \in \{1, \ldots, K\}$
 3. learner receives observed reward $r_t(a_t)$
- goal: want high total (or average) reward
 relative to best policy $\pi \in \Pi$
 - i.e., want small regret:

 $$
 \max_{\pi \in \Pi} \frac{1}{T} \sum_{t=1}^{T} r_t(\pi(x_t)) - \frac{1}{T} \sum_{t=1}^{T} r_t(a_t)
 $$

 best policy’s average reward \hspace{1cm} learner’s average reward
An Algorithm that Solves this Problem

[Auer, Cesa-Bianchi, Freund, Schapire]

- **Exp4** solves this problem
 - maintains weights over all policies in Π
Exp4 solves this problem
- maintains weights over all policies in \(\Pi \)
- regret is essentially optimal:

\[
O \left(\sqrt{\frac{K \ln |\Pi|}{T}} \right)
\]

- even works for adversarial (i.e., non-random, non-iid) data
An Algorithm that Solves this Problem

[Auer, Cesa-Bianchi, Freund, Schapire]

- Exp4 solves this problem
 - maintains weights over all policies in Π
- regret is essentially optimal:
 $$O \left(\sqrt{\frac{K \ln |\Pi|}{T}} \right)$$
- even works for adversarial (i.e., non-random, non-iid) data
- but: time/space are linear in $|\Pi|$
 - too slow if $|\Pi|$ gigantic
An Algorithm that Solves this Problem

[Auer, Cesa-Bianchi, Freund, Schapire]

- Exp4 solves this problem
 - maintains weights over all policies in Π
- regret is essentially optimal:

$$O\left(\sqrt{\frac{K \ln |\Pi|}{T}}\right)$$

- even works for adversarial (i.e., non-random, non-iid) data
- but: time/space are linear in $|\Pi|$
 - too slow if $|\Pi|$ gigantic
- seems hopeless to do better for fully general policy spaces
- this talk: aim for time/space only $\text{poly}(\log |\Pi|)$ when Π is “well structured”
The (Fantasy) Full-Information Setting

- say see rewards for all actions
The (Fantasy) Full-Information Setting

- say see rewards for **all** actions

<table>
<thead>
<tr>
<th>Context</th>
<th>Actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Male, 50, ...)</td>
<td>1 2 3</td>
</tr>
</tbody>
</table>

• for any π, can compute rewards would have received

- average is good estimate of π’s expected reward
- choose empirically best $\pi \in \Pi$
- regret = $O(\sqrt{\ln |\Pi| T})$

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>□</td>
</tr>
<tr>
<td></td>
<td>learner’s action</td>
</tr>
</tbody>
</table>
The (Fantasy) Full-Information Setting

- say see rewards for all actions

<table>
<thead>
<tr>
<th>Context</th>
<th>Actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Male, 50,...)</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>1.0</td>
</tr>
</tbody>
</table>

= learner’s action
The (Fantasy) Full-Information Setting

- say see rewards for all actions

<table>
<thead>
<tr>
<th>Context</th>
<th>Actions</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(Male, 50, …)</td>
<td>1</td>
<td>2.0</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>0.0</td>
</tr>
</tbody>
</table>

learner’s total reward = 0.2 +

[] = learner’s action
The (Fantasy) Full-Information Setting

- say see rewards for all actions

<table>
<thead>
<tr>
<th>Context</th>
<th>Actions</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td>((\textit{Male}, 50, \ldots))</td>
<td>1.0</td>
</tr>
<tr>
<td>((\textit{Female}, 18, \ldots))</td>
<td>1.0</td>
</tr>
<tr>
<td>((\textit{Female}, 48, \ldots))</td>
<td>0.5</td>
</tr>
<tr>
<td>\vdots</td>
<td>\vdots</td>
</tr>
</tbody>
</table>

learner’s total reward = 0.2 + 1.0 + 0.1 + \cdots
The (Fantasy) Full-Information Setting

- say see rewards for all actions

<table>
<thead>
<tr>
<th>Context</th>
<th>Actions</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>(Male, 50, ...)</td>
<td>1.0</td>
<td>0.2</td>
</tr>
<tr>
<td>(Female, 18, ...)</td>
<td>1.0</td>
<td>0.0</td>
</tr>
<tr>
<td>(Female, 48, ...)</td>
<td>0.5</td>
<td>0.1</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

learner’s total reward = 0.2 + 1.0 + 0.1 + ⋯

- for any π, can compute rewards would have received

π's action

\[\text{learner’s action} \]

\[\overset{\square}{} \]
The (Fantasy) Full-Information Setting

- say see rewards for all actions

<table>
<thead>
<tr>
<th>Context</th>
<th>Actions</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(Male, 50, ...)</td>
<td>1.0</td>
<td>0.2</td>
<td>0.0</td>
</tr>
<tr>
<td>(Female, 18, ...)</td>
<td>1.0</td>
<td>0.0</td>
<td>1.0</td>
</tr>
<tr>
<td>(Female, 48, ...)</td>
<td>0.5</td>
<td>0.1</td>
<td>0.7</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

learner’s total reward = 0.2 + 1.0 + 0.1 + ...
π’s total reward = 0.0 + 1.0 + 0.5 + ...

- for any π, can compute rewards would have received
The (Fantasy) Full-Information Setting

- say see rewards for all actions

<table>
<thead>
<tr>
<th>Context</th>
<th>Actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Male, 50, ...)</td>
<td>1.0 0.2 0.0</td>
</tr>
<tr>
<td>(Female, 18, ...)</td>
<td>1.0 0.0 1.0</td>
</tr>
<tr>
<td>(Female, 48, ...)</td>
<td>0.5 0.1 0.7</td>
</tr>
</tbody>
</table>

\[\text{learner's total reward} = 0.2 + 1.0 + 0.1 + \cdots \]
\[\pi's \text{ total reward} = 0.0 + 1.0 + 0.5 + \cdots \]

- for any \(\pi \), can compute rewards would have received
 - average is good estimate of \(\pi \)'s expected reward
The (Fantasy) Full-Information Setting

- say see rewards for all actions

<table>
<thead>
<tr>
<th>Context</th>
<th>Actions</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td>(Male, 50, ...)</td>
<td>1.0</td>
</tr>
<tr>
<td>(Female, 18, ...)</td>
<td>1.0</td>
</tr>
<tr>
<td>(Female, 48, ...)</td>
<td>0.5</td>
</tr>
<tr>
<td>: :</td>
<td>:</td>
</tr>
</tbody>
</table>

learner’s total reward = 0.2 + 1.0 + 0.1 + \cdots

\pi’s total reward = 0.0 + 1.0 + 0.5 + \cdots

- for any \pi, can compute rewards would have received
 - average is good estimate of \pi’s expected reward
- choose empirically best \pi \in \Pi

\text{regret} = O\left(\sqrt{\frac{\ln |\Pi|}{T}}\right)
“Arg-Max Oracle” (AMO)

- to apply, just need “oracle” (algorithm/subroutine) for finding best $\pi \in \Pi$ on observed rewards
- input: $(x_1, r_1), \ldots, (x_T, r_T)$
 \begin{align*}
 x_t & = \text{context} \\
 r_t & = (r_t(1), \ldots, r_t(K)) = \text{rewards for all actions}
 \end{align*}
- output:
 \[
 \hat{\pi} = \arg \max_{\pi \in \Pi} \sum_{t=1}^{T} r_t(\pi(x_t))
 \]
“Arg-Max Oracle” (AMO)

- to apply, just need “oracle” (algorithm/subroutine) for finding best $\pi \in \mathcal{P}$ on observed rewards
- input: $(x_1, r_1), \ldots, (x_T, r_T)$
 - $x_t = \text{context}$
 - $r_t = (r_t(1), \ldots, r_t(K)) = \text{rewards for all actions}$
- output:

$$\hat{\pi} = \arg \max_{\pi \in \mathcal{P}} \sum_{t=1}^{T} r_t(\pi(x_t))$$

- really just (cost-sensitive) classification:
 - context \leftrightarrow example
 - action \leftrightarrow label/class
 - policy \leftrightarrow classifier
 - reward \leftrightarrow gain/(negative) cost
"Arg-Max Oracle" (AMO)

- to apply, just need “oracle” (algorithm/subroutine) for finding best $\pi \in \Pi$ on observed rewards
- input: $(x_1, r_1), \ldots, (x_T, r_T)$

 $x_t =$ context

 $r_t = (r_t(1), \ldots, r_t(K)) =$ rewards for all actions

- output:

 $\hat{\pi} = \arg \max_{\pi \in \Pi} \sum_{t=1}^{T} r_t(\pi(x_t))$

- really just (cost-sensitive) classification:

 context \leftrightarrow example

 action \leftrightarrow label/class

 policy \leftrightarrow classifier

 reward \leftrightarrow gain/(negative) cost

- so: if have “good” classification algorithm for Π, can use to find good policy (in full-information setting)
But in the Bandit Setting...

- ...only see rewards for actions taken
But in the Bandit Setting...

- ...only see rewards for actions taken

<table>
<thead>
<tr>
<th>Context</th>
<th>Actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Male, 50, ...)</td>
<td>1.0</td>
</tr>
<tr>
<td>(Female, 18, ...)</td>
<td>1.0</td>
</tr>
<tr>
<td>(Female, 48, ...)</td>
<td>0.5</td>
</tr>
<tr>
<td>...</td>
<td></td>
</tr>
<tr>
<td>(Male, 50, ...)</td>
<td>0.2</td>
</tr>
<tr>
<td>(Female, 18, ...)</td>
<td>0.0</td>
</tr>
<tr>
<td>(Female, 48, ...)</td>
<td>0.1</td>
</tr>
<tr>
<td>...</td>
<td></td>
</tr>
<tr>
<td>(Male, 50, ...)</td>
<td>0.0</td>
</tr>
<tr>
<td>(Female, 18, ...)</td>
<td>1.0</td>
</tr>
<tr>
<td>(Female, 48, ...)</td>
<td>0.7</td>
</tr>
<tr>
<td>...</td>
<td></td>
</tr>
</tbody>
</table>

□ = learner’s action
But in the Bandit Setting...

- ...only see rewards for actions taken

<table>
<thead>
<tr>
<th>Context</th>
<th>Actions</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>((Male, 50, \ldots))</td>
<td>1.0</td>
<td>0.2</td>
<td>0.0</td>
<td></td>
</tr>
<tr>
<td>((Female, 18, \ldots))</td>
<td>1.0</td>
<td>0.0</td>
<td>(1.0)</td>
<td></td>
</tr>
<tr>
<td>((Female, 48, \ldots))</td>
<td>0.5</td>
<td>(0.1)</td>
<td>0.7</td>
<td></td>
</tr>
</tbody>
</table>

\[\square = \text{learner's action}\]
But in the Bandit Setting...

- ...only see rewards for actions taken

<table>
<thead>
<tr>
<th>Context</th>
<th>Actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>((Male, 50, \ldots))</td>
<td>1.0 0.2 0.0</td>
</tr>
<tr>
<td>((Female, 18, \ldots))</td>
<td>1.0 0.0 1.0</td>
</tr>
<tr>
<td>((Female, 48, \ldots))</td>
<td>0.5 0.1 0.7</td>
</tr>
<tr>
<td>\vdots</td>
<td>\vdots</td>
</tr>
</tbody>
</table>

learner’s total reward = 0.2 + 1.0 + 0.1 + \ldots
But in the Bandit Setting...

- ...only see rewards for actions taken

<table>
<thead>
<tr>
<th>Context</th>
<th>Actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Male, 50, ...)</td>
<td>1.0</td>
</tr>
<tr>
<td>(Female, 18, ...)</td>
<td>1.0</td>
</tr>
<tr>
<td>(Female, 48, ...)</td>
<td>0.5</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

learner’s total reward = 0.2 + 1.0 + 0.1 + ...

- for any policy π, only observe π’s rewards on subset of rounds
But in the Bandit Setting...

- ...only see rewards for actions taken

<table>
<thead>
<tr>
<th>Context</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Male, 50, ...)</td>
<td>1.0</td>
<td>0.2</td>
<td>0.0</td>
</tr>
<tr>
<td>(Female, 18, ...)</td>
<td>1.0</td>
<td>0.0</td>
<td>1.0</td>
</tr>
<tr>
<td>(Female, 48, ...)</td>
<td>0.5</td>
<td>0.1</td>
<td>0.7</td>
</tr>
</tbody>
</table>

learner's total reward = 0.2 + 1.0 + 0.1 + ···
π’s total reward = ?? + 1.0 + ?? + ···

- for any policy π, only observe π’s rewards on subset of rounds
But in the Bandit Setting...

- ...only see rewards for actions taken

<table>
<thead>
<tr>
<th>Context</th>
<th>Actions</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td>(Male, 50, ...)</td>
<td>1.0</td>
</tr>
<tr>
<td>(Female, 18, ...)</td>
<td>1.0</td>
</tr>
<tr>
<td>(Female, 48, ...)</td>
<td>0.5</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

learner’s total reward = 0.2 + 1.0 + 0.1 + ⋯
π’s total reward = ?? + 1.0 + ?? + ⋯

- for any policy π, only observe π’s rewards on subset of rounds
- might like to use AMO to find empirically good policy
- problems:
 - only see some rewards
 - observed rewards highly biased
 (due to skewed choice of actions)
Key Question

- still: AMO is a natural primitive
- key question: can we solve the contextual bandits problem given access to AMO?
Key Question

- still: AMO is a natural primitive
- key question: can we solve the contextual bandits problem given access to AMO?
- can we use an AMO on bandit data by somehow:
 - filling in missing data
 - overcoming bias
- want: optimal regret, time/space bounds poly(log |Π|)
- AMO is theoretical idealization, captures structure in policy space
- in practice, can use off-the-shelf classification algorithm
still: AMO is a natural primitive

key question: can we solve the contextual bandits problem given access to AMO?

can we use an AMO on bandit data by somehow:
 • filling in missing data
 • overcoming bias

want:
 • optimal regret
 • time/space bounds $\text{poly}(\log |\Pi|)$
• still: AMO is a natural primitive
• **key question**: can we solve the contextual bandits problem given access to AMO?
• can we use an AMO on bandit data by somehow:
 • filling in missing data
 • overcoming bias
• **want**:
 • optimal regret
 • time/space bounds $\text{poly}(\log |\Pi|)$
• AMO is **theoretical idealization**
• captures **structure** in policy space
• in **practice**, can use off-the-shelf classification algorithm
\(\epsilon \)-Greedy/Epoch-Greedy

- partially solved by the \(\epsilon \)-greedy/epoch-greedy algorithm
- on each round, choose action:
 - according to “best” policy so far (with probability \(1 - \epsilon \))
 - uniformly at random (with probability \(\epsilon \))
\(\epsilon \)-Greedy/Epoch-Greedy

[Langford & Zhang]

- partially solved by the \(\epsilon \)-greedy/epoch-greedy algorithm
- on each round, choose action:
 - according to “best” policy so far (with probability \(1 - \epsilon \))
 [can find with AMO]
 - uniformly at random (with probability \(\epsilon \))
\(\epsilon\)-Greedy/Epoch-Greedy

- partially solved by the \(\epsilon\)-greedy/epoch-greedy algorithm
- on each round, choose action:
 - according to "best" policy so far (with probability \(1 - \epsilon\))
 - uniformly at random (with probability \(\epsilon\))

\[\text{regret} = O\left(\left(\frac{K \ln |\Pi|}{T}\right)^{1/3}\right)\]

- fast and simple, but not optimal

[Langford & Zhang]
“Monster” Algorithm

[Dudík, Hsu, Kale, Karampatziakis, Langford, Reyzin & Zhang]

- RandomizedUCB (aka “Monster”) algorithm gets optimal regret using AMO
- solves multiple optimization problems using ellipsoid algorithm
- very slow: calls AMO about $\tilde{O}(T^4)$ times on every round
Main Result

• new, simple algorithm for contextual bandits with AMO access
• (nearly) optimal regret: $\tilde{O}\left(\sqrt{\frac{K \ln |\Pi|}{T}}\right)$
• fast: calls AMO far less than once per round!
 • on average, calls AMO

$$\tilde{O}\left(\sqrt{\frac{K}{T \ln |\Pi|}}\right) \ll 1$$

times per round
Main Result

• new, simple algorithm for contextual bandits with AMO access
• (nearly) optimal regret: \(\tilde{O}\left(\sqrt{\frac{K \ln |\Pi|}{T}}\right) \)
• fast: calls AMO far less than once per round!
 • on average, calls AMO
 \[\tilde{O}\left(\sqrt{\frac{K}{T \ln |\Pi|}}\right) \ll 1 \]
 times per round
• rest of talk: sketching main ideas of the algorithm
De-biasing Biased Estimates

- **selection bias** is major problem:
 - only observe reward for single action
 - exploring while exploiting leads to **inherently biased** estimates
De-biasing Biased Estimates

- **selection bias** is major problem:
 - only observe reward for single action
 - exploring while exploiting leads to **inherently biased** estimates
- nevertheless: can use **simple trick** to get unbiased estimates for **all** actions
De-biasing Biased Estimates (cont.)

- say $r(a) = \text{(unknown) reward for action } a$
 $p(a) = \text{(known) probability of choosing } a$

$E[\hat{r}(a)] = r(a) \quad \text{— unbiased!}$

\therefore can estimate reward for all actions

\therefore can estimate expected reward for any policy π:

$\hat{R}(\pi) = \sum_{t=1}^{T-1} \hat{r}_{\tau}(\pi(x_{\tau})) = \hat{E}[\hat{r}(\pi(x)))]$

\therefore can estimate regret of any policy π:

$\hat{\text{Regret}}(\pi) = \max_{\hat{\pi} \in \Pi} \hat{R}(\hat{\pi}) - \hat{R}(\pi)$

- can find maximizing $\hat{\pi}$ using AMO
De-biasing Biased Estimates (cont.)

• say \(r(a) \) = (unknown) reward for action \(a \)
 \(p(a) \) = (known) probability of choosing \(a \)

• define \(\hat{r}(a) = \begin{cases} \frac{r(a)}{p(a)} & \text{if } a \text{ chosen} \\ 0 & \text{else} \end{cases} \)

• then \(\mathbb{E}[\hat{r}(a)] = r(a) \)

De-biasing Biased Estimates (cont.)

- say $r(a) =$ (unknown) reward for action a
 $p(a) =$ (known) probability of choosing a

- define $\hat{r}(a) = \begin{cases} r(a)/p(a) & \text{if } a \text{ chosen} \\ 0 & \text{else} \end{cases}$

- then $E[\hat{r}(a)] = r(a)$ — unbiased!

∴ can estimate reward for all actions

∴ can estimate expected reward for any policy π

$\hat{R}(\pi) = \sum_{\tau=1}^{t-1} \hat{r}(\pi(x_{\tau})) = E[\hat{r}(\pi(x))]$

∴ can estimate regret of any policy π

$\hat{\text{Regret}}(\pi) = \max_{\hat{\pi} \in \Pi} \hat{R}(\hat{\pi}) - \hat{R}(\pi)$

• can find maximizing $\hat{\pi}$ using AMO
De-biasing Biased Estimates (cont.)

- say \(r(a) = \) (unknown) reward for action \(a \)
 \(p(a) = \) (known) probability of choosing \(a \)
- define \(\hat{r}(a) = \begin{cases}
 r(a)/p(a) & \text{if } a \text{ chosen} \\
 0 & \text{else}
\end{cases} \)
- then \(E[\hat{r}(a)] = r(a) \) — unbiased!
 \therefore \text{can estimate reward for all actions}
 \therefore \text{can estimate expected reward for any policy } \pi:

\[
\hat{R}(\pi) = \frac{1}{t-1} \sum_{\tau=1}^{t-1} \hat{r}_{\tau}(\pi(x_{\tau})) = \hat{E}[\hat{r}(\pi(x))]
\]
De-biasing Biased Estimates (cont.)

• say $r(a) =$ (unknown) reward for action a
 $p(a) =$ (known) probability of choosing a

• define $\hat{r}(a) = \begin{cases} r(a)/p(a) & \text{if } a \text{ chosen} \\ 0 & \text{else} \end{cases}$

• then $E[\hat{r}(a)] = r(a)$ — unbiased!

∴ can estimate reward for all actions
∴ can estimate expected reward for any policy π:

$$\hat{R}(\pi) = \frac{1}{t-1} \sum_{\tau=1}^{t-1} \hat{r}_\tau(\pi(x_\tau)) = \hat{E}[\hat{r}(\pi(x))]$$

∴ can estimate regret of any policy π:

$$\text{Regret}(\pi) = \max_{\hat{\pi} \in \Pi} \hat{R}(\hat{\pi}) - \hat{R}(\pi)$$

• can find maximizing $\hat{\pi}$ using AMO
Variance Control

- estimates are unbiased — done?
Variance Control

• estimates are unbiased — done?
• no! — variance may be extremely large
estimates are unbiased — done?

no! — variance may be extremely large

can show \(\text{variance}(\hat{r}(a)) \leq \frac{1}{p(a)} \)
Variance Control

• estimates are unbiased — done?
• no! — variance may be extremely large
• can show \text{variance}(\hat{r}(a)) \leq \frac{1}{p(a)}

\therefore \text{to get good estimates, must ensure that } 1/p(a) \text{ not too large}
Randomizing over Policies

- need to choose actions (semi-)randomly
Randomizing over Policies

- need to choose actions (semi-)randomly
- approach: on each round,
 - compute distribution Q over policy space Π
 - randomly pick $\pi \sim Q$
 - on current context x, choose action $\pi(x)$
Randomizing over Policies

• need to choose actions (semi-)randomly
• approach: on each round,
 • compute distribution Q over policy space Π
 • randomly pick $\pi \sim Q$
 • on current context x, choose action $\pi(x)$
• Q induces distribution over actions (for any x):

$$Q(a|x) = \Pr_{\pi \sim Q}[\pi(x) = a]$$
Randomizing over Policies

- need to choose actions (semi-)randomly
- approach: on each round,
 - compute distribution Q over policy space Π
 - randomly pick $\pi \sim Q$
 - on current context x, choose action $\pi(x)$
- Q induces distribution over actions (for any x):
 \[
 Q(a|x) = \Pr_{\pi \sim Q} [\pi(x) = a]
 \]
- seems will require time/space $O(|\Pi|)$ to compute Q over space Π
 - will see later how to avoid!
How to Pick Q

- on each round, want to pick Q with:
 1. low (estimated) regret
 i.e., choose actions think will give high reward
How to Pick Q

- on each round, want to pick Q with:
 1. low (estimated) regret
 i.e., choose actions think will give high reward
 2. low (estimated) variance
 i.e., ensure future estimates will be accurate
How to Pick Q

on each round, want to pick Q with:

1. low (estimated) regret
 i.e., choose actions think will give high reward

2. low (estimated) variance
 i.e., ensure future estimates will be accurate
Low Regret

- \(\hat{\text{Regret}}(\pi) = \) estimated regret of \(\pi \)
Low Regret

- $\hat{\text{Regret}}(\pi) =$ estimated regret of π
- so: estimated regret for random $\pi \sim Q$ is

$$\sum_{\pi} Q(\pi) \hat{\text{Regret}}(\pi) = E_{\pi \sim Q} \left[\hat{\text{Regret}}(\pi) \right]$$
Low Regret

- \(\hat{\text{Regret}}(\pi) = \) estimated regret of \(\pi \)
- so: estimated regret for random \(\pi \sim Q \) is

\[
\sum_{\pi} Q(\pi) \hat{\text{Regret}}(\pi) = E_{\pi \sim Q} [\hat{\text{Regret}}(\pi)]
\]

- want small:

\[
\sum_{\pi} Q(\pi) \hat{\text{Regret}}(\pi) \leq [\text{small}]
\]
Low Variance

\[
\frac{1}{Q(a|x)} = \text{variance of estimate of reward for action } a
\]
Low Variance

- \(\frac{1}{Q(a|x)} \) = variance of estimate of reward for action \(a \)
- so \(\frac{1}{Q(\pi(x)|x)} \) = variance if action chosen by \(\pi \)
Low Variance

- \(\frac{1}{Q(a|x)} \) = variance of estimate of reward for action \(a \)
- so \(\frac{1}{Q(\pi(x)|x)} \) = variance if action chosen by \(\pi \)
- can estimate expected variance for actions chosen by \(\pi \):

\[
\hat{V}^Q(\pi) = \hat{E} \left[\frac{1}{Q(\pi(x)|x)} \right] = \frac{1}{t-1} \sum_{\tau=1}^{t-1} \frac{1}{Q(\pi(x_\tau)|x_\tau)}
\]
Low Variance

- \(\frac{1}{Q(a|x)} \) = variance of estimate of reward for action \(a \)
- so \(\frac{1}{Q(\pi(x)|x)} \) = variance if action chosen by \(\pi \)
- can estimate expected variance for actions chosen by \(\pi \):

\[
\hat{V}^Q(\pi) = \hat{E} \left[\frac{1}{Q(\pi(x)|x)} \right] = \frac{1}{t-1} \sum_{\tau=1}^{t-1} \frac{1}{Q(\pi(x_\tau)|x_\tau)}
\]

- want small:

\[
\hat{V}^Q(\pi) \leq \text{[small]} \quad \text{for all } \pi \in \Pi
\]
Low Variance

- \(\frac{1}{Q(a|x)} \) = variance of estimate of reward for action \(a \)
- so \(\frac{1}{Q(\pi(x)|x)} \) = variance if action chosen by \(\pi \)
- can estimate expected variance for actions chosen by \(\pi \):

\[
\hat{\mathbb{V}}_Q(\pi) = \hat{\mathbb{E}} \left(\frac{1}{Q(\pi(x)|x)} \right) = \frac{1}{t-1} \sum_{\tau=1}^{t-1} \frac{1}{Q(\pi(x_\tau)|x_\tau)}
\]

- want small:

\[
\hat{\mathbb{V}}_Q(\pi) \leq \text{[small]} \quad \text{for all } \pi \in \Pi
\]

- detail: problematic if \(Q(a|x) \) too close to zero
Low Variance

\[\frac{1}{Q^\mu(a|x)} = \text{variance of estimate of reward for action } a \]

\[\frac{1}{Q^\mu(\pi(x)|x)} = \text{variance if action chosen by } \pi \]

\[\text{so can estimate expected variance for actions chosen by } \pi: \]

\[\hat{V}^Q(\pi) = \hat{\mathbb{E}} \left[\frac{1}{Q^\mu(\pi(x)|x)} \right] = \frac{1}{t-1} \sum_{\tau=1}^{t-1} \frac{1}{Q^\mu(\pi(x_\tau)|x_\tau)} \]

\[\text{want small:} \]

\[\hat{V}^Q(\pi) \leq \text{[small]} \quad \text{for all } \pi \in \Pi \]

\[\text{detail: problematic if } Q(a|x) \text{ too close to zero} \]

\[\text{to avoid, “smooth” probabilities by occasionally picking action uniformly at random:} \]

\[Q^\mu(a|x) = (1 - K\mu)Q(a|x) + \mu \]
Pulling Together

- want Q such that:

$$\sum_{\pi} Q(\pi) \hat{\text{Regret}}(\pi) \leq \text{[small]}$$

$$\hat{V}^Q(\pi) \leq \text{[small]} \quad \text{for all } \pi \in \Pi$$
Pulling Together

• want Q such that:

$$\sum_{\pi} Q(\pi) \overset{\text{Regret}(\pi)}{\leq} [\text{small}]$$

$$\hat{V}^Q(\pi) \leq [\text{small}] \quad \text{for all } \pi \in \Pi$$

$$\sum_{\pi} Q(\pi) = 1$$
Pulling Together

• want Q such that:

$$\sum_{\pi} Q(\pi) \hat{\text{Regret}}(\pi) \leq C_0$$

$$C_1 \cdot \hat{\mathcal{V}}^Q(\pi) \leq C_0 \quad \text{for all } \pi \in \Pi$$

$$\sum_{\pi} Q(\pi) = 1$$

• can fill in constants
Pulling Together

- want Q such that:

$$
\sum_{\pi} Q(\pi) \widehat{\text{Regret}}(\pi) \leq C_0
$$

$$
C_1 \cdot \widehat{V}^Q(\pi) \leq C_0 + \widehat{\text{Regret}}(\pi) \quad \text{for all } \pi \in \Pi
$$

$$
\sum_{\pi} Q(\pi) = 1
$$

- can fill in constants
- make easier by:
 - allowing higher variance for policies with higher regret
 (poor policies can be eliminated even with fairly poor performance estimates)
Pulling Together

- want Q such that:

\[
\sum_{\pi} Q(\pi) \hat{\text{Regret}}(\pi) \leq C_0
\]

\[
C_1 \cdot \hat{V}^Q(\pi) \leq C_0 + \hat{\text{Regret}}(\pi) \quad \text{for all } \pi \in \Pi
\]

\[
\sum_{\pi} Q(\pi) \leq 1
\]

- can fill in constants
- make easier by:
 - allowing higher variance for policies with higher regret (poor policies can be eliminated even with fairly poor performance estimates)
 - only require Q to be sub-distribution (can put all remaining mass on $\hat{\pi}$ with maximum estimated reward)
Optimization Problem “OP”

find Q such that:

$$\sum_{\pi} Q(\pi) \hat{\text{Regret}}(\pi) \leq C_0$$

$$C_1 \cdot \hat{V}^Q(\pi) \leq C_0 + \hat{\text{Regret}}(\pi) \quad \text{for all } \pi \in \Pi$$

$$\sum_{\pi} Q(\pi) \leq 1$$
find Q such that:

\[
\sum_{\pi} Q(\pi) \hat{\text{Regret}}(\pi) \leq C_0 \quad \text{[regret constraint]}
\]

\[
C_1 \cdot \hat{V}^Q(\pi) \leq C_0 + \hat{\text{Regret}}(\pi) \quad \text{for all } \pi \in \Pi \quad \text{[variance constraint]}
\]

\[
\sum_{\pi} Q(\pi) \leq 1 \quad \text{[sub-distribution]}
\]
find Q such that:

\[
\sum_{\pi} Q(\pi) \hat{\text{Regret}}(\pi) \leq C_0 \quad \text{[regret constraint]}
\]

\[
C_1 \cdot \hat{V}^Q(\pi) \leq C_0 + \hat{\text{Regret}}(\pi) \quad \text{for all } \pi \in \Pi \quad \text{[variance constraint]}
\]

\[
\sum_{\pi} Q(\pi) \leq 1 \quad \text{[sub-distribution]}
\]

- similar to [Dudík et al.]
Optimization Problem “OP”

find Q such that:

$$\sum_{\pi} Q(\pi) \widehat{\text{Regret}}(\pi) \leq C_0$$ \hspace{1cm} \text{[regret constraint]}

$$C_1 \cdot \widehat{V}^Q(\pi) \leq C_0 + \widehat{\text{Regret}}(\pi) \quad \text{for all } \pi \in \Pi$$ \hspace{1cm} \text{[variance constraint]}

$$\sum_{\pi} Q(\pi) \leq 1$$ \hspace{1cm} \text{[sub-distribution]}

• similar to [Dudík et al.]
• seems awful:
 • $|\Pi|$ variables
 • $|\Pi|$ constraints
 • constraints involve nasty non-linear functions
 (recall $\widehat{V}^Q(\pi) = \widehat{E} \left[\frac{1}{Q^\mu(\pi(x)|x)} \right]$)
 • not even clear if feasible
• **Theorem:** if can solve OP on every round (for appropriate constants), then will get regret

\[\tilde{O} \left(\sqrt{\frac{K \ln |\Pi|}{T}} \right) \]

Theorem: if can solve OP on every round (for appropriate constants), then will get regret

\[\tilde{O}\left(\sqrt{\frac{K \ln |\Pi|}{T}}\right) \]

proof idea:
- regret constraint ensures low regret (if estimates are good enough)
- variance constraint ensures that they actually will be good enough

essentially same approach as [Dudík et al.]
How to Solve?

- basic idea:
 - find a violated constraint
 - (attempt to) fix it
 - repeat
How to Solve? (cont.)

- \(Q \leftarrow 0 \)
- repeat:
 1. if \(Q \) “too big” then rescale
 - (i.e., multiply \(Q \) by scalar \(< 1\)
 - ensures sub-distribution and regret constraints are satisfied
• \(Q \leftarrow 0 \)

• repeat:
 1. if \(Q \) “too big” then rescale
 • (i.e., multiply \(Q \) by scalar < 1)
 • ensures sub-distribution and regret constraints are satisfied
 2. find \(\pi \in \Pi \) for which corresponding variance constraint is violated
 a. if none exists, halt and output \(Q \)
 b. else \(Q(\pi) \leftarrow Q(\pi) + \alpha \) where \(\alpha = \) [some formula]
1. [detailed version]
 if $\sum_{\pi} Q(\pi)(C_0 + \hat{\text{Regret}}(\pi)) > C_0$ then rescale Q (multiply by scalar < 1) so holds with equality
More Detail: Rescaling Step

1. [detailed version]
 if $\sum_{\pi} Q(\pi)(C_0 + \hat{\text{Regret}}(\pi)) > C_0$ then rescale Q (multiply by scalar < 1) so holds with equality

- after this step, have

$$\sum_{\pi} Q(\pi)(C_0 + \hat{\text{Regret}}(\pi)) \leq C_0$$
1. [detailed version]
 if $\sum_{\pi} Q(\pi)\left(C_0 + \hat{\text{Regret}}(\pi)\right) > C_0$ then rescale Q (multiply by scalar < 1) so holds with equality

 - after this step, have

 $$\sum_{\pi} Q(\pi)\left(C_0 + \hat{\text{Regret}}(\pi)\right) \leq C_0$$

 which implies:
 - $\sum_{\pi} Q(\pi) \leq 1$ [sub-distribution]
 - $\sum_{\pi} Q(\pi) \hat{\text{Regret}}(\pi) \leq C_0$ [regret constraint]
More Detail: Checking Variance Constraints

2. [detailed version]
 find \(\pi \in \Pi \) for which \(C_1 \cdot \hat{V}^Q(\pi) - \hat{\text{Regret}}(\pi) > C_0 \)
 a. if none exists, halt and output \(Q \)
 b. else \(Q(\pi) \leftarrow Q(\pi) + \alpha \) where \(\alpha = \) [some formula]
More Detail: Checking Variance Constraints

2. [detailed version]
 find $\pi \in \Pi$ for which $C_1 \cdot \hat{V}^Q(\pi) - \hat{\text{Regret}}(\pi) > C_0$
 a. if none exists, halt and output Q
 b. else $Q(\pi) \leftarrow Q(\pi) + \alpha$ where $\alpha = \text{[some formula]}$

• if halts then $C_1 \cdot \hat{V}^Q(\pi) \leq C_0 + \hat{\text{Regret}}(\pi)$ for all $\pi \in \Pi$
 [variance constraint]
More Detail: Checking Variance Constraints

2. [detailed version]
 find \(\pi \in \Pi \) for which \(C_1 \cdot \hat{V}^Q(\pi) - \hat{\text{Regret}}(\pi) > C_0 \)
 a. if none exists, halt and output \(Q \)
 b. else \(Q(\pi) \leftarrow Q(\pi) + \alpha \) where \(\alpha = \text{[some formula]} \)

- if halts then \(C_1 \cdot \hat{V}^Q(\pi) \leq C_0 + \hat{\text{Regret}}(\pi) \) for all \(\pi \in \Pi \)
 [variance constraint]

- can execute step using AMO:
 - can construct “pseudo-rewards” \(\tilde{r}_\tau \) for which (\(\forall \pi \)):

\[
C_1 \cdot \hat{V}^Q(\pi) - \hat{\text{Regret}}(\pi) = \sum_\tau \tilde{r}_\tau(\pi(x_\tau)) + \text{[constant]}
\]
More Detail: Checking Variance Constraints

2. [detailed version]
 find \(\pi \in \Pi \) for which \(C_1 \cdot \hat{V}^Q(\pi) - \hat{\text{Regret}}(\pi) > C_0 \)
 a. if none exists, halt and output \(Q \)
 b. else \(Q(\pi) \leftarrow Q(\pi) + \alpha \) where \(\alpha = \) [some formula]

 • if halts then \(C_1 \cdot \hat{V}^Q(\pi) \leq C_0 + \hat{\text{Regret}}(\pi) \) for all \(\pi \in \Pi \)
 [variance constraint]

 • can execute step using AMO:
 • can construct “pseudo-rewards” \(\tilde{r}_\tau \) for which \((\forall \pi) \):
 \[
 C_1 \cdot \hat{V}^Q(\pi) - \hat{\text{Regret}}(\pi) = \sum_\tau \tilde{r}_\tau(\pi(x_\tau)) + [\text{constant}]
 \]

 • so: can maximize with AMO
 • will find violating constraint (if one exists)
2. [detailed version]
find $\pi \in \Pi$ for which $C_1 \cdot \hat{V}^Q(\pi) - \hat{\text{Regret}}(\pi) > C_0$

a. if none exists, halt and output Q
b. else $Q(\pi) \leftarrow Q(\pi) + \alpha$ where $\alpha = \text{[some formula]}$

- if halts then $C_1 \cdot \hat{V}^Q(\pi) \leq C_0 + \hat{\text{Regret}}(\pi)$ for all $\pi \in \Pi$

- can execute step using AMO:
 - can construct “pseudo-rewards” \tilde{r}_τ for which ($\forall \pi$):
 \[C_1 \cdot \hat{V}^Q(\pi) - \hat{\text{Regret}}(\pi) = \sum_{\tau} \tilde{r}_\tau(\pi(x_\tau)) + \text{[constant]} \]

- so: can maximize with AMO
- will find violating constraint (if one exists)

∴ one AMO call per iteration
Why Does It Work?

- so: if halts, then outputs solution to OP
- but how long will it take to halt (if ever)?
- to answer, analyze using a potential function
A Potential Function

- define potential function to quantify progress:

\[
\Phi(Q) = A \cdot \hat{\mathbb{E}} \left[\mathbb{E} \left(\text{uniform} \ || \ Q^\mu(\cdot|x)) \right) \right] + B \cdot \sum_{\pi} Q(\pi) \ \text{Regret}(\pi)
\]

\(\Phi(Q)\) defined for all nonnegative vectors \(Q\) over \(\Pi\) (not just sub-distributions)

- properties:
 - \(\Phi(Q) \geq 0\)
 - convex
 - if \(Q\) minimizes \(\Phi\) then \(Q\) is a solution to OP

- key proof step:
 \(\partial \Phi / \partial Q(\pi) \propto \text{variance constraint for } \pi\)

\(\therefore\) OP is feasible
A Potential Function

- define **potential function** to quantify progress:

\[
\Phi(Q) = A \cdot \hat{E} \left[RE \left(\text{uniform} \parallel Q^\mu(\cdot | x) \right) \right] + B \cdot \sum_{\pi} Q(\pi) \text{Regret}(\pi)
\]

\[
\text{low variance}
\]

\[
\text{low regret}
\]

- defined for all **nonnegative vectors** \(Q \) over \(\Pi \)

(not just sub-distributions)
A Potential Function

- define potential function to quantify progress:
 \[
 \Phi(Q) = A \cdot \hat{E}[RE(\text{uniform } \parallel Q^\mu(\cdot|x))] + B \cdot \sum_{\pi} Q(\pi) \text{Regret}(\pi)
 \]
 - low variance
 - low regret

- defined for all nonnegative vectors \(Q\) over \(\Pi\) (not just sub-distributions)

- properties:
 - \(\Phi(Q) \geq 0\)
 - convex
A Potential Function

- define potential function to quantify progress:

\[
\Phi(Q) = A \cdot \hat{E} \left[\text{RE (uniform \parallel Q^\mu(\cdot|x))} \right] + B \cdot \sum_{\pi} Q(\pi) \text{Regret}(\pi)
\]

 - low variance
 - low regret

- defined for all nonnegative vectors \(Q \) over \(\Pi \)
 - (not just sub-distributions)

- properties:
 - \(\Phi(Q) \geq 0 \)
 - convex
 - if \(Q \) minimizes \(\Phi \) then \(Q \) is a solution to OP
 - key proof step:
 - \(\partial \Phi / \partial Q(\pi) \propto \) variance constraint for \(\pi \)

\[\therefore \text{OP is feasible}\]
Analysis

- algorithm turns out to be (roughly) coordinate descent on Φ
- each step adjusts Q along one coordinate direction $Q(\pi)$
Analysis

- algorithm turns out to be (roughly) coordinate descent on Φ
 - each step adjusts Q along one coordinate direction $Q(\pi)$
- can lower-bound how much Φ decreases on each update
- can also show rescaling step never increases Φ
Analysis

- algorithm turns out to be (roughly) **coordinate descent** on Φ
 - each step adjusts Q along one coordinate direction $Q(\pi)$
- can **lower-bound** how much Φ decreases on each update
- can also show rescaling step never increases Φ
- since $\Phi \geq 0$, gives bound on number of iterations of the algorithm
Analysis

• algorithm turns out to be (roughly) *coordinate descent* on Φ
 • each step adjusts Q along one coordinate direction $Q(\pi)$
• can *lower-bound* how much Φ decreases on each update
• can also show rescaling step never increases Φ
• since $\Phi \geq 0$, gives bound on number of iterations of the algorithm
• **Theorem**: On round t, algorithm halts after at most
 $$\tilde{O} \left(\sqrt{\frac{Kt}{\ln |\Pi|}} \right)$$ iterations (and calls to AMO).
Analysis

- algorithm turns out to be (roughly) coordinate descent on Φ
 - each step adjusts Q along one coordinate direction $Q(\pi)$
- can lower-bound how much Φ decreases on each update
- can also show rescaling step never increases Φ
- since $\Phi \geq 0$, gives bound on number of iterations of the algorithm
- Theorem: On round t, algorithm halts after at most
 \[\tilde{O}\left(\sqrt{\frac{Kt}{\ln|\Pi|}}\right) \]
 iterations (and calls to AMO).
- as corollary, also get bound on sparsity of Q
Epochs and Warm Start

• so far, assumed solve OP from scratch on each round
 • naively, gives $\tilde{O}(T^{3/2})$ calls to AMO in T rounds
 • can do much better!

• first improvement: since data iid, can use same solution for many rounds, i.e., for long "epochs"
 • gives same (near optimal) regret
 • essentially no computation required on rounds where Q not updated

• second improvement: can initialize algorithm with the previous solution (rather than starting fresh each time)
 • works because each new example can only cause Φ to increase slightly
Epochs and Warm Start

• so far, assumed solve OP from scratch on each round
 • naively, gives $\tilde{O}(T^{3/2})$ calls to AMO in T rounds
 • can do much better!

• **first improvement**: since data iid, can use same solution for many rounds, i.e., for long “epochs”
 • gives same (near optimal) regret
 • essentially no computation required on rounds where Q not updated
Epochs and Warm Start

- so far, assumed solve OP from scratch on each round
 - naively, gives $\tilde{O}(T^{3/2})$ calls to AMO in T rounds
 - can do much better!
- first improvement: since data iid, can use same solution for many rounds, i.e., for long “epochs”
 - gives same (near optimal) regret
 - essentially no computation required on rounds where Q not updated
- second improvement: can initialize algorithm with the previous solution (rather than starting fresh each time)
 - works because each new example can only cause Φ to increase slightly
Epochs and Warm Start (cont.)

- putting together:
 - if only update Q on rounds 1, 4, 9, 16, 25, …
 - get same (near optimal) regret
 - only need $\tilde{O}(\sqrt{KT \ln |\Pi|})$

 calls to AMO total for entire sequence of T rounds
Summary

• new algorithm for contextual bandits problem with AMO access
• (nearly) optimal regret
• simple and fast
• only requires an average of

\[\tilde{O} \left(\sqrt{\frac{K}{T \ln |\Pi|}} \right) \ll 1 \]

AMO calls per round
Open Problems and Future Directions

- try out experimentally
- is there an algorithm that uses an online (rather than batch) oracle?
- is there a lower bound on number of AMO calls necessary to solve this problem?
- can we find a similar algorithm that handles adversarial data?