

ALGEBRAIC COMPLEXITY THEORY

Manindra Agrawal

IIT Kanpur

Symposium on Learning, Algorithms and Complexity, IISc Bangalore
2015

OVERVIEW

1 COMPUTATION OVER RINGS

- Arithmetic Circuit Model
- Generalizing Arithmetic Circuits

2 CLASSES P AND NP

3 DEPTH REDUCTION

4 STATUS OF LOWER BOUNDS

5 POLYNOMIAL IDENTITY TESTING

6 LPIT AND LOWER BOUNDS

7 ALGORITHMS FOR 2-PIT AND 3-PIT

OUTLINE

1 COMPUTATION OVER RINGS

- Arithmetic Circuit Model
- Generalizing Arithmetic Circuits

2 CLASSES P AND NP

3 DEPTH REDUCTION

4 STATUS OF LOWER BOUNDS

5 POLYNOMIAL IDENTITY TESTING

6 LPIT AND LOWER BOUNDS

7 ALGORITHMS FOR 2-PIT AND 3-PIT

COMPUTATION WITHOUT BITS

- An algorithm, in general, can use individual bits of the input in very complex ways. In particular, making execution decisions based on the values of a bit.
- Certain algorithms, however, use the individual bits in a much simpler way.
- Example: matrix multiplication. For $[c_{ij}] = [a_{ij}] \cdot [b_{ij}]$, we have:

$$c_{ij} = \sum_{k=0}^{n-1} a_{ik} b_{kj}.$$

- If we assume operations $+$ and $*$ as primitives, and the input being a sequence of numbers denoting entries of matrices, then the algorithm **does not need to access bit values**.

COMPUTATION WITHOUT BITS

- An algorithm, in general, can use individual bits of the input in very complex ways. In particular, making execution decisions based on the values of a bit.
- Certain algorithms, however, use the individual bits in a much simpler way.
- Example: matrix multiplication. For $[c_{ij}] = [a_{ij}] \cdot [b_{ij}]$, we have:

$$c_{ij} = \sum_{k=0}^{n-1} a_{ik} b_{kj}.$$

- If we assume operations $+$ and $*$ as primitives, and the input being a sequence of numbers denoting entries of matrices, then the algorithm **does not need to access bit values**.

COMPUTATION WITHOUT BITS

- An algorithm, in general, can use individual bits of the input in very complex ways. In particular, making execution decisions based on the values of a bit.
- Certain algorithms, however, use the individual bits in a much simpler way.
- Example: matrix multiplication. For $c_{ij} = [a_{ij}] \cdot [b_{ij}]$, we have:

$$c_{ij} = \sum_{k=0}^{n-1} a_{ik} b_{kj}.$$

- If we assume operations $+$ and $*$ as primitives, and the input being a sequence of numbers denoting entries of matrices, then the algorithm **does not need to access bit values**.

OUTLINE

1 COMPUTATION OVER RINGS

- Arithmetic Circuit Model
- Generalizing Arithmetic Circuits

2 CLASSES P AND NP

3 DEPTH REDUCTION

4 STATUS OF LOWER BOUNDS

5 POLYNOMIAL IDENTITY TESTING

6 LPIT AND LOWER BOUNDS

7 ALGORITHMS FOR 2-PIT AND 3-PIT

COMPUTATION WITHOUT BITS

- We can formalize such computations as follows:
 - ▶ Let R be a ring with operations $+$ and $*$.
 - ▶ Let the input be variables x_1, x_2, \dots, x_n .
 - ▶ An algorithm applies a sequence of ring operations on the input variables and constants from R .
 - ▶ The output is a polynomial in $R[x_1, x_2, \dots, x_n]$.
- This is called **arithmetic circuit model**.

COMPUTATION WITHOUT BITS

- We can formalize such computations as follows:
 - ▶ Let R be a ring with operations $+$ and $*$.
 - ▶ Let the input be variables x_1, x_2, \dots, x_n .
 - ▶ An algorithm applies a sequence of ring operations on the input variables and constants from R .
 - ▶ The output is a polynomial in $R[x_1, x_2, \dots, x_n]$.
- This is called **arithmetic circuit model**.

COMPUTATION WITHOUT BITS

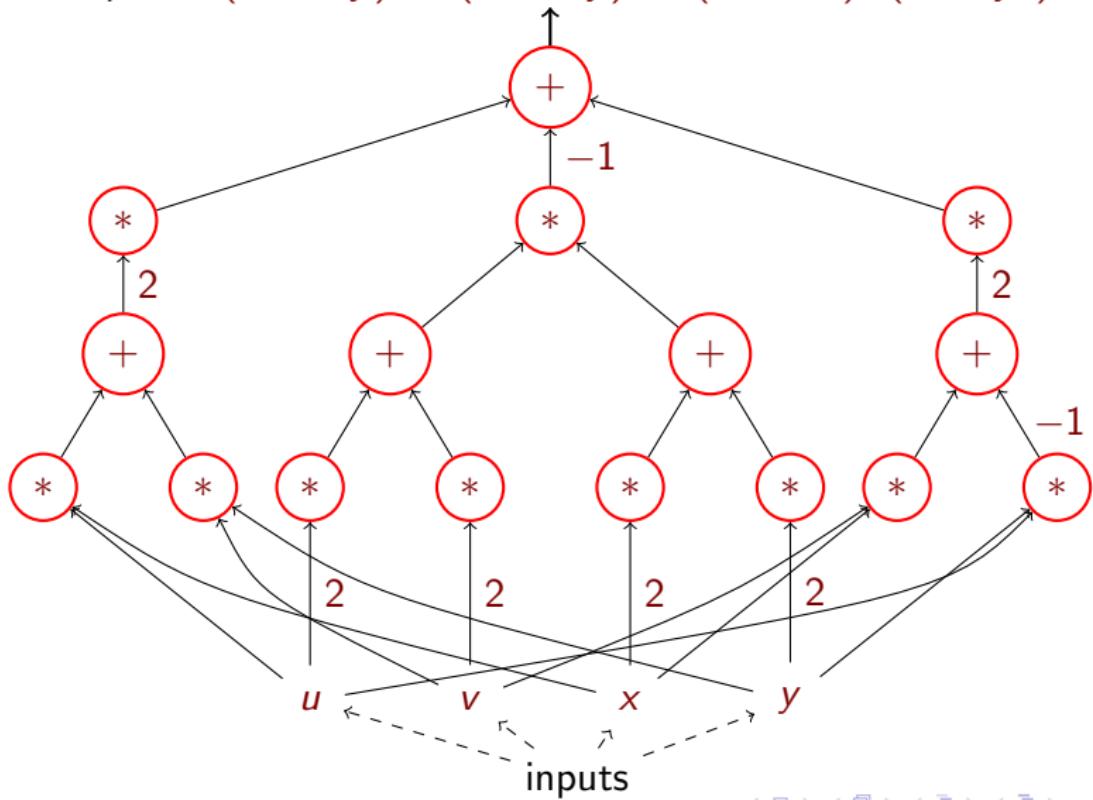
- We can formalize such computations as follows:
 - ▶ Let R be a ring with operations $+$ and $*$.
 - ▶ Let the input be variables x_1, x_2, \dots, x_n .
 - ▶ An algorithm applies a sequence of ring operations on the input variables and constants from R .
 - ▶ The output is a polynomial in $R[x_1, x_2, \dots, x_n]$.
- This is called *arithmetic circuit model*.

COMPUTATION WITHOUT BITS

- We can formalize such computations as follows:
 - ▶ Let R be a ring with operations $+$ and $*$.
 - ▶ Let the input be variables x_1, x_2, \dots, x_n .
 - ▶ An algorithm applies a sequence of ring operations on the input variables and constants from R .
 - ▶ The output is a polynomial in $R[x_1, x_2, \dots, x_n]$.
- This is called **arithmetic circuit model**.

AN EXAMPLE

$$\text{output} = (ux + vy)^2 + (vx - uy)^2 - (u^2 + v^2) \cdot (x^2 + y^2)$$



ARITHMETIC CIRCUIT FAMILIES

- As in the boolean settings, arithmetic circuit model is a **non-uniform** model of computation.
- For each problem, one has, therefore, an infinite family of circuits computing its solution.

ARITHMETIC CIRCUIT FAMILIES

- As in the boolean settings, arithmetic circuit model is a **non-uniform** model of computation.
- For each problem, one has, therefore, an infinite family of circuits computing its solution.

POWER OF THE MODEL

- The model proposed by [Valiant 1979].
- It can compute all of the following operations:
 - ▶ Matrix operations: addition, multiplication, determinant, inverse, characteristic polynomial, permanent
 - ▶ Polynomial operations: addition, multiplication
 - ▶ Multivariate polynomial factorization when the polynomial is fixed

POWER OF THE MODEL

- The model proposed by [Valiant 1979].
- It can compute all of the following operations:
 - ▶ Matrix operations: addition, multiplication, determinant, inverse, characteristic polynomial, permanent
 - ▶ Polynomial operations: addition, multiplication
 - ▶ Multivariate polynomial factorization when the polynomial is fixed

POWER OF THE MODEL

- The model proposed by [Valiant 1979].
- It can compute all of the following operations:
 - ▶ Matrix operations: addition, multiplication, determinant, inverse, characteristic polynomial, permanent
 - ▶ Polynomial operations: addition, multiplication
 - ▶ Multivariate polynomial factorization when the polynomial is fixed

POWER OF THE MODEL

- The model proposed by [Valiant 1979].
- It can compute all of the following operations:
 - ▶ Matrix operations: addition, multiplication, determinant, inverse, characteristic polynomial, permanent
 - ▶ Polynomial operations: addition, multiplication
 - ▶ Multivariate polynomial factorization when the polynomial is fixed

POWER OF THE MODEL

- The model proposed by [Valiant 1979].
- It can compute all of the following operations:
 - ▶ Matrix operations: addition, multiplication, determinant, inverse, characteristic polynomial, permanent
 - ▶ Polynomial operations: addition, multiplication
 - ▶ Multivariate polynomial factorization when the polynomial is fixed

ARITHMETIC COMPLEXITY

Crucial parameters associated with an arithmetic circuit are:

- **Input length:** number of input variables. **Notice that the size of individual variables is not counted!**
- **Size:** equals the number of operations in the circuit (measured as a function of input length).
- **Depth:** equals the length of the longest path from a variable to output of the circuit.
- **Degree:** equals the formal degree of circuit defined inductively as: 1 for input variables, max for addition gates, and sum for multiplication gates.
- **Fanin:** equals the largest number of inputs to a gate in the circuit. We allow arbitrary fanin.

ARITHMETIC COMPLEXITY

Crucial parameters associated with an arithmetic circuit are:

- **Input length:** number of input variables. **Notice that the size of individual variables is not counted!**
- **Size:** equals the number of operations in the circuit (measured as a function of input length).
- **Depth:** equals the length of the longest path from a variable to output of the circuit.
- **Degree:** equals the formal degree of circuit defined inductively as: 1 for input variables, max for addition gates, and sum for multiplication gates.
- **Fanin:** equals the largest number of inputs to a gate in the circuit. We allow arbitrary fanin.

ARITHMETIC COMPLEXITY

Crucial parameters associated with an arithmetic circuit are:

- **Input length:** number of input variables. **Notice that the size of individual variables is not counted!**
- **Size:** equals the number of operations in the circuit (measured as a function of input length).
- **Depth:** equals the length of the longest path from a variable to output of the circuit.
- **Degree:** equals the formal degree of circuit defined inductively as: 1 for input variables, max for addition gates, and sum for multiplication gates.
- **Fanin:** equals the largest number of inputs to a gate in the circuit. We allow arbitrary fanin.

ARITHMETIC COMPLEXITY

Crucial parameters associated with an arithmetic circuit are:

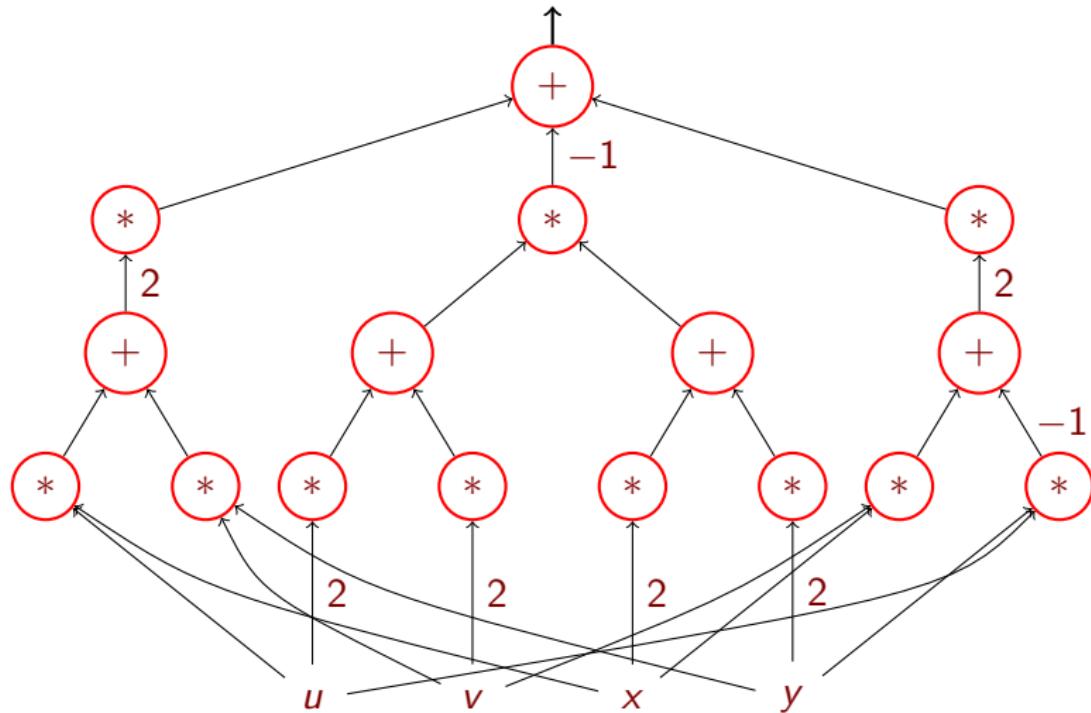
- **Input length**: number of input variables. **Notice that the size of individual variables is not counted!**
- **Size**: equals the number of operations in the circuit (measured as a function of input length).
- **Depth**: equals the length of the longest path from a variable to output of the circuit.
- **Degree**: equals the formal degree of circuit defined inductively as: 1 for input variables, max for addition gates, and sum for multiplication gates.
- **Fanin**: equals the largest number of inputs to a gate in the circuit. We allow arbitrary fanin.

ARITHMETIC COMPLEXITY

Crucial parameters associated with an arithmetic circuit are:

- **Input length**: number of input variables. **Notice that the size of individual variables is not counted!**
- **Size**: equals the number of operations in the circuit (measured as a function of input length).
- **Depth**: equals the length of the longest path from a variable to output of the circuit.
- **Degree**: equals the formal degree of circuit defined inductively as: 1 for input variables, max for addition gates, and sum for multiplication gates.
- **Fanin**: equals the largest number of inputs to a gate in the circuit. We allow arbitrary fanin.

CIRCUIT PARAMETERS



SIZE = 16

DEPTH = 4

DEGREE = 4

FANIN = 3

OUTLINE

1 COMPUTATION OVER RINGS

- Arithmetic Circuit Model
- Generalizing Arithmetic Circuits

2 CLASSES P AND NP

3 DEPTH REDUCTION

4 STATUS OF LOWER BOUNDS

5 POLYNOMIAL IDENTITY TESTING

6 LPIT AND LOWER BOUNDS

7 ALGORITHMS FOR 2-PIT AND 3-PIT

EXTENSION WITH ZERO-TEST

- Many other algebraic operations **cannot** be computed in arithmetic circuit model: solving system of linear equations, rank of a matrix, gcd of polynomials, primality testing ...
- Generalize the model by including another operation: **zero-test**.
 - This is a branching operation: check if the input is zero; if yes do *A* else do *B*.
- All the above operations can be computed in the new model.

EXTENSION WITH ZERO-TEST

- Many other algebraic operations **cannot** be computed in arithmetic circuit model: solving system of linear equations, rank of a matrix, gcd of polynomials, primality testing ...
- Generalize the model by including another operation: **zero-test**.
 - ▶ This is a branching operation: check if the input is zero; if yes do **A** else do **B**.
- All the above operations can be computed in the new model.

EXTENSION WITH ZERO-TEST

- Many other algebraic operations **cannot** be computed in arithmetic circuit model: solving system of linear equations, rank of a matrix, gcd of polynomials, primality testing ...
- Generalize the model by including another operation: **zero-test**.
 - ▶ This is a branching operation: check if the input is zero; if yes do **A** else do **B**.
- All the above operations can be computed in the new model.

BSS MODEL

- The generalized model can still not compute simple functions, e.g., "Is $x < y$?"
- [Blum-Shub-Smale 1989] replaced zero-test with \leq operator.
 - ▶ The operator makes sense only in rings with a total ordering, e.g., \mathbb{Z} , \mathbb{Q} , \mathbb{R} .
- They showed that the model, for $R = \mathbb{Z}$ or \mathbb{Q} restores access to bits, and is therefore equivalent to the standard boolean model.
- For $R = \mathbb{R}$, they developed a new theory of complexity.
- We will not consider this model any further.

BSS MODEL

- The generalized model can still not compute simple functions, e.g., "Is $x < y$?"
- [Blum-Shub-Smale 1989] replaced zero-test with \leq operator.
 - ▶ The operator makes sense only in rings with a total ordering, e.g., \mathbb{Z} , \mathbb{Q} , \mathbb{R} .
- They showed that the model, for $R = \mathbb{Z}$ or \mathbb{Q} restores access to bits, and is therefore equivalent to the standard boolean model.
- For $R = \mathbb{R}$, they developed a new theory of complexity.
- We will not consider this model any further.

BSS MODEL

- The generalized model can still not compute simple functions, e.g., "Is $x < y$?"
- [Blum-Shub-Smale 1989] replaced zero-test with \leq operator.
 - ▶ The operator makes sense only in rings with a total ordering, e.g., \mathbb{Z} , \mathbb{Q} , \mathbb{R} .
- They showed that the model, for $R = \mathbb{Z}$ or \mathbb{Q} restores access to bits, and is therefore equivalent to the standard boolean model.
- For $R = \mathbb{R}$, they developed a new theory of complexity.
- We will not consider this model any further.

BSS MODEL

- The generalized model can still not compute simple functions, e.g., "Is $x < y$?"
- [Blum-Shub-Smale 1989] replaced zero-test with \leq operator.
 - ▶ The operator makes sense only in rings with a total ordering, e.g., \mathbb{Z} , \mathbb{Q} , \mathbb{R} .
- They showed that the model, for $R = \mathbb{Z}$ or \mathbb{Q} restores access to bits, and is therefore equivalent to the standard boolean model.
- For $R = \mathbb{R}$, they developed a new theory of complexity.
- We will not consider this model any further.

BSS MODEL

- The generalized model can still not compute simple functions, e.g., "Is $x < y$?"
- [Blum-Shub-Smale 1989] replaced zero-test with \leq operator.
 - ▶ The operator makes sense only in rings with a total ordering, e.g., \mathbb{Z} , \mathbb{Q} , \mathbb{R} .
- They showed that the model, for $R = \mathbb{Z}$ or \mathbb{Q} restores access to bits, and is therefore equivalent to the standard boolean model.
- For $R = \mathbb{R}$, they developed a new theory of complexity.
- We will not consider this model any further.

OUTLINE

1 COMPUTATION OVER RINGS

- Arithmetic Circuit Model
- Generalizing Arithmetic Circuits

2 CLASSES P AND NP

3 DEPTH REDUCTION

4 STATUS OF LOWER BOUNDS

5 POLYNOMIAL IDENTITY TESTING

6 LPIT AND LOWER BOUNDS

7 ALGORITHMS FOR 2-PIT AND 3-PIT

THE CLASS P

- For both the models, the class P can be defined in an analogous way to boolean settings: **all problems that can be solved by a circuit family of polynomial size.**
- In the arithmetic circuit model, a problem is simply a family of polynomials, typically parameterized by the number of variables, or degree, or both:
 - ▶ Chebyshev polynomials

$$T_d(x) = \sum_{k=0}^{\lfloor d/2 \rfloor} \binom{d}{2k} (x^2 - 1)^k x^{d-2k}$$

by degree,

- ▶ Determinant polynomial by number of variables, and
- ▶ Elementary symmetric polynomials

$$S_d(x_1, x_2, \dots, x_n) = \sum_{I \subseteq [1, n], |I|=d} \prod_{j \in I} x_j,$$

by both degree and number of variables.

THE CLASS P

- For both the models, the class P can be defined in an analogous way to boolean settings: **all problems that can be solved by a circuit family of polynomial size.**
- In the arithmetic circuit model, a problem is simply a family of polynomials, typically parameterized by the number of variables, or degree, or both:
 - ▶ Chebyshev polynomials

$$T_d(x) = \sum_{k=0}^{\lfloor d/2 \rfloor} \binom{d}{2k} (x^2 - 1)^k x^{d-2k}$$

by degree,

- ▶ Determinant polynomial by number of variables, and
- ▶ Elementary symmetric polynomials

$$S_d(x_1, x_2, \dots, x_n) = \sum_{I \subseteq [1, n], |I|=d} \prod_{j \in I} x_j,$$

by both degree and number of variables.

THE CLASS P

- For both the models, the class P can be defined in an analogous way to boolean settings: **all problems that can be solved by a circuit family of polynomial size.**
- In the arithmetic circuit model, a problem is simply a family of polynomials, typically parameterized by the number of variables, or degree, or both:
 - ▶ Chebyshev polynomials

$$T_d(x) = \sum_{k=0}^{\lfloor d/2 \rfloor} \binom{d}{2k} (x^2 - 1)^k x^{d-2k}$$

by degree,

- ▶ Determinant polynomial by number of variables, and
- ▶ Elementary symmetric polynomials

$$S_d(x_1, x_2, \dots, x_n) = \sum_{I \subseteq [1, n], |I|=d} \prod_{j \in I} x_j,$$

by both degree and number of variables.

THE CLASS P

- For both the models, the class P can be defined in an analogous way to boolean settings: **all problems that can be solved by a circuit family of polynomial size.**
- In the arithmetic circuit model, a problem is simply a family of polynomials, typically parameterized by the number of variables, or degree, or both:
 - ▶ Chebyshev polynomials

$$T_d(x) = \sum_{k=0}^{\lfloor d/2 \rfloor} \binom{d}{2k} (x^2 - 1)^k x^{d-2k}$$

by degree,

- ▶ Determinant polynomial by number of variables, and
- ▶ Elementary symmetric polynomials

$$S_d(x_1, x_2, \dots, x_n) = \sum_{I \subseteq [1, n], |I|=d} \prod_{j \in I} x_j,$$

by both degree and number of variables.

THE CLASS P

- For both the models, the class P can be defined in an analogous way to boolean settings: **all problems that can be solved by a circuit family of polynomial size.**
- In the arithmetic circuit model, a problem is simply a family of polynomials, typically parameterized by the number of variables, or degree, or both:
 - ▶ Chebyshev polynomials

$$T_d(x) = \sum_{k=0}^{\lfloor d/2 \rfloor} \binom{d}{2k} (x^2 - 1)^k x^{d-2k}$$

by degree,

- ▶ Determinant polynomial by number of variables, and
- ▶ Elementary symmetric polynomials

$$S_d(x_1, x_2, \dots, x_n) = \sum_{I \subseteq [1, n], |I|=d} \prod_{j \in I} x_j,$$

by both degree and number of variables.

EXAMPLES

- In the arithmetic circuit model, the following problems are in **P**:
 - ▶ Matrix operations: addition, multiplication, determinant, inverse, characteristic polynomial
 - ▶ Polynomial operations: addition, multiplication, elementary symmetric polynomials
 - ▶ Multivariate polynomial factorization when the polynomial is fixed
 - ▶ In the arithmetic circuits with zero-test model, the following problems are also in **P**: solving a system of linear equations, rank of a matrix, gcd of polynomials, primality testing.

EXAMPLES

- In the arithmetic circuit model, the following problems are in **P**:
 - ▶ Matrix operations: addition, multiplication, determinant, inverse, characteristic polynomial
 - ▶ Polynomial operations: addition, multiplication, elementary symmetric polynomials
 - ▶ Multivariate polynomial factorization when the polynomial is fixed
 - ▶ In the arithmetic circuits with zero-test model, the following problems are also in **P**: solving a system of linear equations, rank of a matrix, gcd of polynomials, primality testing.

EXAMPLES

- In the arithmetic circuit model, the following problems are in **P**:
 - ▶ Matrix operations: addition, multiplication, determinant, inverse, characteristic polynomial
 - ▶ Polynomial operations: addition, multiplication, elementary symmetric polynomials
 - ▶ Multivariate polynomial factorization when the polynomial is fixed
 - ▶ In the arithmetic circuits with zero-test model, the following problems are also in **P**: solving a system of linear equations, rank of a matrix, gcd of polynomials, primality testing.

EXAMPLES

- In the arithmetic circuit model, the following problems are in P :
 - ▶ Matrix operations: addition, multiplication, determinant, inverse, characteristic polynomial
 - ▶ Polynomial operations: addition, multiplication, elementary symmetric polynomials
 - ▶ Multivariate polynomial factorization when the polynomial is fixed
 - ▶ In the arithmetic circuits with zero-test model, the following problems are also in P : solving a system of linear equations, rank of a matrix, gcd of polynomials, primality testing.

EXAMPLES

- In the arithmetic circuit model, the following problems are in P :
 - ▶ Matrix operations: addition, multiplication, determinant, inverse, characteristic polynomial
 - ▶ Polynomial operations: addition, multiplication, elementary symmetric polynomials
 - ▶ Multivariate polynomial factorization when the polynomial is fixed
 - ▶ In the arithmetic circuits with zero-test model, the following problems are also in P : solving a system of linear equations, rank of a matrix, gcd of polynomials, primality testing.

A POOR DEFINITION OF NP

- Analogous definition of NP to the boolean settings fails.
- Consider arithmetic circuit model, where each computation results in a polynomial, over $R = \mathbb{C}$.
- Say polynomial family $P_n(x_1, \dots, x_n)$ is in NP if there exists another polynomial family $Q_{n+m+1}(x_1, \dots, x_n, y_1, \dots, y_m, z)$ in P such that:
 - ▶ $m = n^{O(1)}$, and
 - ▶ $P_n(\alpha_1, \dots, \alpha_n) = \gamma$ iff there exists β_1, \dots, β_m with $Q_{n+m+1}(\alpha_1, \dots, \alpha_n, \beta_1, \dots, \beta_m, \gamma) = 0$.

A POOR DEFINITION OF NP

- Analogous definition of NP to the boolean settings fails.
- Consider arithmetic circuit model, where each computation results in a polynomial, over $R = \mathbb{C}$.
- Say polynomial family $P_n(x_1, \dots, x_n)$ is in **NP** if there exists another polynomial family $Q_{n+m+1}(x_1, \dots, x_n, y_1, \dots, y_m, z)$ in **P** such that:
 - ▶ $m = n^{O(1)}$, and
 - ▶ $P_n(\alpha_1, \dots, \alpha_n) = \gamma$ iff there exists β_1, \dots, β_m with $Q_{n+m+1}(\alpha_1, \dots, \alpha_n, \beta_1, \dots, \beta_m, \gamma) = 0$.

A POOR DEFINITION OF NP

- Analogous definition of NP to the boolean settings fails.
- Consider arithmetic circuit model, where each computation results in a polynomial, over $R = \mathbb{C}$.
- Say polynomial family $P_n(x_1, \dots, x_n)$ is in NP if there exists another polynomial family $Q_{n+m+1}(x_1, \dots, x_n, y_1, \dots, y_m, z)$ in P such that:
 - ▶ $m = n^{O(1)}$, and
 - ▶ $P_n(\alpha_1, \dots, \alpha_n) = \gamma$ iff there exists β_1, \dots, β_m with $Q_{n+m+1}(\alpha_1, \dots, \alpha_n, \beta_1, \dots, \beta_m, \gamma) = 0$.

A POOR DEFINITION OF NP

- By definition, $Q_{n+m+1}(\alpha_1, \dots, \alpha_n, y_1, \dots, y_m, z) = 0$ iff $z = \gamma$.
- Therefore,

$$Q_{n+m+1}(\alpha_1, \dots, \alpha_n, y_1, \dots, y_m, z) = \delta \cdot (z - \gamma)^t,$$

$$t > 0.$$

- Since this is true for all $\alpha_1, \dots, \alpha_n$, we can reset Q_{n+m+1} to $Q_{n+m+1}(\alpha_1, \dots, \alpha_n, 0, \dots, 0, z)$.

A POOR DEFINITION OF NP

- By definition, $Q_{n+m+1}(\alpha_1, \dots, \alpha_n, y_1, \dots, y_m, z) = 0$ iff $z = \gamma$.
- Therefore,

$$Q_{n+m+1}(\alpha_1, \dots, \alpha_n, y_1, \dots, y_m, z) = \delta \cdot (z - \gamma)^t,$$

$$t > 0.$$

- Since this is true for all $\alpha_1, \dots, \alpha_n$, we can reset Q_{n+m+1} to $Q_{n+m+1}(\alpha_1, \dots, \alpha_n, 0, \dots, 0, z)$.

A POOR DEFINITION OF NP

- By definition, $Q_{n+m+1}(\alpha_1, \dots, \alpha_n, y_1, \dots, y_m, z) = 0$ iff $z = \gamma$.
- Therefore,

$$Q_{n+m+1}(\alpha_1, \dots, \alpha_n, y_1, \dots, y_m, z) = \delta \cdot (z - \gamma)^t,$$

$$t > 0.$$

- Since this is true for all $\alpha_1, \dots, \alpha_n$, we can reset Q_{n+m+1} to $Q_{n+m+1}(\alpha_1, \dots, \alpha_n, 0, \dots, 0, z)$.

A BETTER DEFINITION OF NP

THE CLASS NP [VALIANT 1979]

Polynomial family $\{P_n\}$ is in NP if there exists a family $\{P_{n+m}\} \in \mathbf{P}$ such that $m = n^{O(1)}$, and for every n :

$$P_n(x_1, \dots, x_n) = \sum_{y_1 \in \{0,1\}} \dots \sum_{y_m \in \{0,1\}} Q_{n+m}(x_1, \dots, x_n, y_1, \dots, y_m).$$

- ① Here 0 and 1 are identities of \mathbf{R} .
- ② The definition can be easily generalized to arithmetic circuit with zero-test model.

EXAMPLES

- All problems in P ,
- Permanent family,
- Jones polynomials: representing invariants of knots,
- Tutte polynomials:

$$T_G(x, y) = \sum_{A \subseteq E} (x - 1)^{k(A) - k(E)} (y - 1)^{k(A) + |A| - |V|}$$

where $G = (V, E)$ is an undirected graph and $k(A)$ is the number of connected components in the subgraph (V, A) .

EXAMPLES

- All problems in P ,
- Permanent family,
- Jones polynomials: representing invariants of knots,
- Tutte polynomials:

$$T_G(x, y) = \sum_{A \subseteq E} (x - 1)^{k(A) - k(E)} (y - 1)^{k(A) + |A| - |V|}$$

where $G = (V, E)$ is an undirected graph and $k(A)$ is the number of connected components in the subgraph (V, A) .

EXAMPLES

- All problems in P ,
- Permanent family,
- Jones polynomials: representing invariants of knots,
- Tutte polynomials:

$$T_G(x, y) = \sum_{A \subseteq E} (x - 1)^{k(A) - k(E)} (y - 1)^{k(A) + |A| - |V|}$$

where $G = (V, E)$ is an undirected graph and $k(A)$ is the number of connected components in the subgraph (V, A) .

EXAMPLES

- All problems in P ,
- Permanent family,
- Jones polynomials: representing invariants of knots,
- Tutte polynomials:

$$T_G(x, y) = \sum_{A \subseteq E} (x - 1)^{k(A) - k(E)} (y - 1)^{k(A) + |A| - |V|}$$

where $G = (V, E)$ is an undirected graph and $k(A)$ is the number of connected components in the subgraph (V, A) .

NP-COMPLETE PROBLEMS

THEOREM [VALIENT 1979]

Computing permanent family is **complete** for **NP** in arithmetic circuit model: for every polynomial family $\{Q_n\}$ in **NP**, for every n , Q_n can be expressed as permanent of a $n^{O(1)}$ -size matrix with variable and constant entries.

- Several other polynomial families are also NP-complete: Jones polynomials, Tutte polynomials, matching polynomial etc.

NP-COMPLETE PROBLEMS

THEOREM [VALIENT 1979]

Computing permanent family is **complete** for **NP** in arithmetic circuit model: for every polynomial family $\{Q_n\}$ in **NP**, for every n , Q_n can be expressed as permanent of a $n^{O(1)}$ -size matrix with variable and constant entries.

- Several other polynomial families are also NP-complete: Jones polynomials, Tutte polynomials, matching polynomial etc.

Is $P \neq NP$?

- The classes P and NP of arithmetic circuit model roughly correspond to computing the boolean classes $\#L$ and $\#P$ respectively:
 - ▶ Permanent is complete for $\#P$ in boolean model and for NP in arithmetic circuit model.
 - ▶ Determinant is complete for $\#L$ in boolean model and for P under quasi-polynomial size reductions in arithmetic circuit model.
- Therefore, it is a weaker question that $P \neq NP$ in boolean model: **If $P \neq NP$ in boolean model then $P \neq NP$ in arithmetic circuit model.**

Is $P \neq NP$?

- The classes P and NP of arithmetic circuit model roughly correspond to computing the boolean classes $\#L$ and $\#P$ respectively:
 - ▶ Permanent is complete for $\#P$ in boolean model and for NP in arithmetic circuit model.
 - ▶ Determinant is complete for $\#L$ in boolean model and for P under quasi-polynomial size reductions in arithmetic circuit model.
- Therefore, it is a weaker question that $P \neq NP$ in boolean model: **If $P \neq NP$ in boolean model then $P \neq NP$ in arithmetic circuit model.**

Is $P \neq NP$?

- The classes P and NP of arithmetic circuit model roughly correspond to computing the boolean classes $\#L$ and $\#P$ respectively:
 - ▶ Permanent is complete for $\#P$ in boolean model and for NP in arithmetic circuit model.
 - ▶ Determinant is complete for $\#L$ in boolean model and for P under quasi-polynomial size reductions in arithmetic circuit model.
- Therefore, it is a weaker question that $P \neq NP$ in boolean model: **If $P \neq NP$ in boolean model then $P \neq NP$ in arithmetic circuit model.**

Is $P \neq NP$?

- The classes P and NP of arithmetic circuit model roughly correspond to computing the boolean classes $\#L$ and $\#P$ respectively:
 - ▶ Permanent is complete for $\#P$ in boolean model and for NP in arithmetic circuit model.
 - ▶ Determinant is complete for $\#L$ in boolean model and for P under quasi-polynomial size reductions in arithmetic circuit model.
- Therefore, it is a weaker question that $P \neq NP$ in boolean model: **If $P \neq NP$ in boolean model then $P \neq NP$ in arithmetic circuit model.**

Is $P \neq NP$?

- Even for arithmetic circuit model, proving $P \neq NP$ has been very challenging, and has remained a hypothesis.
- Henceforth, we restrict ourselves to the arithmetic model of computation.
- For arithmetic circuit model, the classes P and NP are called VP and VNP : named after Valiant.
- Over the years, this problem has become one of the most active areas of research in complexity theory.

Is $P \neq NP$?

- Even for arithmetic circuit model, proving $P \neq NP$ has been very challenging, and has remained a hypothesis.
- Henceforth, we restrict ourselves to the arithmetic model of computation.
- For arithmetic circuit model, the classes P and NP are called VP and VNP : named after Valiant.
- Over the years, this problem has become one of the most active areas of research in complexity theory.

Is $P \neq NP$?

- Even for arithmetic circuit model, proving $P \neq NP$ has been very challenging, and has remained a hypothesis.
- Henceforth, we restrict ourselves to the arithmetic model of computation.
- For arithmetic circuit model, the classes P and NP are called VP and VNP : named after Valiant.
- Over the years, this problem has become one of the most active areas of research in complexity theory.

Is $P \neq NP$?

- Even for arithmetic circuit model, proving $P \neq NP$ has been very challenging, and has remained a hypothesis.
- Henceforth, we restrict ourselves to the arithmetic model of computation.
- For arithmetic circuit model, the classes P and NP are called VP and VNP : named after Valiant.
- Over the years, this problem has become one of the most active areas of research in complexity theory.

OUTLINE

1 COMPUTATION OVER RINGS

- Arithmetic Circuit Model
- Generalizing Arithmetic Circuits

2 CLASSES P AND NP

3 DEPTH REDUCTION

4 STATUS OF LOWER BOUNDS

5 POLYNOMIAL IDENTITY TESTING

6 LPIT AND LOWER BOUNDS

7 ALGORITHMS FOR 2-PIT AND 3-PIT

REDUCING DEPTH TO $O(\log d)$

THEOREM (VALIANT-SKYUM-BERKOWITZ-RACKOFF, 1983)

If polynomial $P(x_1, \dots, x_n)$ of degree d is computable by an arithmetic circuit of size $s \geq n$, then it can also be computed by an arithmetic circuit of size $s^{O(1)}$ whose depth is $O(\log d)$ and fanin of multiplication gates is two.

Another construction was given by [Allender-Jiao-Mahajan-Vinay 1994].

REDUCING DEPTH TO 4

THEOREM (A-VINAY 2008)

If polynomial $P(x_1, \dots, x_n)$ of degree d is computable by an arithmetic circuit of size $s = 2^{o(d+d \log \frac{n}{d})}$, then it can also be computed by an arithmetic circuit of size $s^{O(1)}$ of depth 4.

Extended by [Koiran 2012, Tavenas 2013].

PROOF

Let the polynomial $P(x_1, \dots, x_n)$ be computed by an arithmetic circuit C of size $t = 2^{o(d+d \log \frac{n}{d})}$.

- [Allender-Jiao-Mahajan-Vinay 1994] shows that C can be transformed to a circuit D of degree d , size $t^{O(1)}$ and depth $O(\log d)$ with multiplication gates of fanin two.
- We modify this transformation slightly to obtain a circuit D of degree d , size $t^{O(1)}$ and depth $\leq 2 \log d$ with multiplication gates of fanin ≤ 6 .
- Further, the circuit D consists of alternating layers of addition and multiplication gates.
- We now describe the construction of the circuit D .

PROOF

Let the polynomial $P(x_1, \dots, x_n)$ be computed by an arithmetic circuit C of size $t = 2^{o(d+d \log \frac{n}{d})}$.

- [Allender-Jiao-Mahajan-Vinay 1994] shows that C can be transformed to a circuit D of degree d , size $t^{O(1)}$ and depth $O(\log d)$ with multiplication gates of fanin two.
- We modify this transformation slightly to obtain a circuit D of degree d , size $t^{O(1)}$ and depth $\leq 2 \log d$ with multiplication gates of fanin ≤ 6 .
- Further, the circuit D consists of alternating layers of addition and multiplication gates.
- We now describe the construction of the circuit D .

PROOF

Let the polynomial $P(x_1, \dots, x_n)$ be computed by an arithmetic circuit C of size $t = 2^{o(d+d \log \frac{n}{d})}$.

- [Allender-Jiao-Mahajan-Vinay 1994] shows that C can be transformed to a circuit D of degree d , size $t^{O(1)}$ and depth $O(\log d)$ with multiplication gates of fanin two.
- We modify this transformation slightly to obtain a circuit D of degree d , size $t^{O(1)}$ and depth $\leq 2 \log d$ with multiplication gates of fanin ≤ 6 .
- Further, the circuit D consists of alternating layers of addition and multiplication gates.
- We now describe the construction of the circuit D .

PROOF

Let the polynomial $P(x_1, \dots, x_n)$ be computed by an arithmetic circuit C of size $t = 2^{o(d+d \log \frac{n}{d})}$.

- [Allender-Jiao-Mahajan-Vinay 1994] shows that C can be transformed to a circuit D of degree d , size $t^{O(1)}$ and depth $O(\log d)$ with multiplication gates of fanin two.
- We modify this transformation slightly to obtain a circuit D of degree d , size $t^{O(1)}$ and depth $\leq 2 \log d$ with multiplication gates of fanin ≤ 6 .
- Further, the circuit D consists of alternating layers of addition and multiplication gates.
- We now describe the construction of the circuit D .

CONSTRUCTION OF D : SETUP

- Make the circuit C layered with alternating layers of addition and multiplication gates.
- Make fanin of every multiplication gate two.
- Rearrange children of multiplication gates so that degree of the right child is greater than or equal to the degree of the left child.

CONSTRUCTION OF D : SETUP

- Make the circuit C layered with alternating layers of addition and multiplication gates.
- Make fanin of every multiplication gate two.
- Rearrange children of multiplication gates so that degree of the right child is greater than or equal to the degree of the left child.

CONSTRUCTION OF D : SETUP

- Make the circuit C layered with alternating layers of addition and multiplication gates.
- Make fanin of every multiplication gate two.
- Rearrange children of multiplication gates so that degree of the right child is greater than or equal to the degree of the left child.

CONSTRUCTION OF D : PROOF TREES

A **proof tree** rooted at gate g of circuit C is a subcircuit of C obtained as follows:

- Start with the subcircuit of C that has gate g at the top and computes the polynomial at gate g .
- For every $+$ -gate in the subcircuit, retain only one input to the gate deleting the remaining input lines.
- For every $*$ -gate in the subcircuit, retain both the inputs to the gate.

A proof tree rooted at gate g computes a monomial and the polynomial at g is the sum over monomials computed by all proof trees rooted at g .

CONSTRUCTION OF D : PROOF TREES

A **proof tree** rooted at gate g of circuit C is a subcircuit of C obtained as follows:

- Start with the subcircuit of C that has gate g at the top and computes the polynomial at gate g .
- For every $+$ -gate in the subcircuit, retain only one input to the gate deleting the remaining input lines.
- For every $*$ -gate in the subcircuit, retain both the inputs to the gate.

A proof tree rooted at gate g computes a monomial and the polynomial at g is the sum over monomials computed by all proof trees rooted at g .

CONSTRUCTION OF D : PROOF TREES

A **proof tree** rooted at gate g of circuit C is a subcircuit of C obtained as follows:

- Start with the subcircuit of C that has gate g at the top and computes the polynomial at gate g .
- For every $+$ -gate in the subcircuit, retain only one input to the gate deleting the remaining input lines.
- For every $*$ -gate in the subcircuit, retain both the inputs to the gate.

A proof tree rooted at gate g computes a monomial and the polynomial at g is the sum over monomials computed by all proof trees rooted at g .

CONSTRUCTION OF D : DEFINING INTERMEDIATE POLYNOMIALS

- For every input variable x_i , let $[x_i]$ stand for the polynomial x_i .
- For every gate g of C , let $[g]$ stand for polynomial computed at gate g .
- For every pair of gates g and h of C , let $[g, h]$ be the polynomial:

$$[g, h] = \sum_T m(T, h)$$

where T runs over all proof trees rooted at g and $m(T, h)$ is the monomial computed by proof tree T when gate h is replaced by 1 if gate h occurs in the **rightmost path** of T , $m(T, h)$ is 0 otherwise.

- It follows that

$$[g] = \sum_{i=1}^n [g, x_i] [x_i].$$

CONSTRUCTION OF D : DEFINING INTERMEDIATE POLYNOMIALS

- For every input variable x_i , let $[x_i]$ stand for the polynomial x_i .
- For every gate g of C , let $[g]$ stand for polynomial computed at gate g .
- For every pair of gates g and h of C , let $[g, h]$ be the polynomial:

$$[g, h] = \sum_T m(T, h)$$

where T runs over all proof trees rooted at g and $m(T, h)$ is the monomial computed by proof tree T when gate h is replaced by 1 if gate h occurs in the rightmost path of T , $m(T, h)$ is 0 otherwise.

- It follows that

$$[g] = \sum_{i=1}^n [g, x_i] [x_i].$$

CONSTRUCTION OF D : DEFINING INTERMEDIATE POLYNOMIALS

- For every input variable x_i , let $[x_i]$ stand for the polynomial x_i .
- For every gate g of C , let $[g]$ stand for polynomial computed at gate g .
- For every pair of gates g and h of C , let $[g, h]$ be the polynomial:

$$[g, h] = \sum_T m(T, h)$$

where T runs over all proof trees rooted at g and $m(T, h)$ is the monomial computed by proof tree T when gate h is replaced by 1 if gate h occurs in the **rightmost path** of T , $m(T, h)$ is 0 otherwise.

- It follows that

$$[g] = \sum_{i=1}^n [g, x_i] [x_i].$$

CONSTRUCTION OF D : DEFINING INTERMEDIATE POLYNOMIALS

- For every input variable x_i , let $[x_i]$ stand for the polynomial x_i .
- For every gate g of C , let $[g]$ stand for polynomial computed at gate g .
- For every pair of gates g and h of C , let $[g, h]$ be the polynomial:

$$[g, h] = \sum_T m(T, h)$$

where T runs over all proof trees rooted at g and $m(T, h)$ is the monomial computed by proof tree T when gate h is replaced by 1 if gate h occurs in the **rightmost path** of T , $m(T, h)$ is 0 otherwise.

- It follows that

$$[g] = \sum_{i=1}^n [g, x_i] [x_i].$$

CONSTRUCTION OF D : DEFINING GATES $[g, h]$

- If g is a $+$ -gate with children g_1, \dots, g_t , then

$$[g, h] = \sum_{i=1}^t [g_i, h].$$

- Let g be a $*$ -gate with children g_L (left child) and g_R (right child).
- A rightmost path from g to h is a path from g to h in the circuit obtained from C by deleting input line from left child of every $*$ -gate.
- If there are only $+$ -gates on every rightmost path from g to h then

$$[g, h] = [g_L].$$

CONSTRUCTION OF D : DEFINING GATES $[g, h]$

- If g is a $+$ -gate with children g_1, \dots, g_t , then

$$[g, h] = \sum_{i=1}^t [g_i, h].$$

- Let g be a $*$ -gate with children g_L (left child) and g_R (right child).
- A **rightmost path** from g to h is a path from g to h in the circuit obtained from C by deleting input line from left child of every $*$ -gate.
- If there are only $+$ -gates on every rightmost path from g to h then

$$[g, h] = [g_L].$$

CONSTRUCTION OF D : DEFINING GATES $[g, h]$

- If g is a $+$ -gate with children g_1, \dots, g_t , then

$$[g, h] = \sum_{i=1}^t [g_i, h].$$

- Let g be a $*$ -gate with children g_L (left child) and g_R (right child).
- A rightmost path from g to h is a path from g to h in the circuit obtained from C by deleting input line from left child of every $*$ -gate.
- If there are only $+$ -gates on every rightmost path from g to h then

$$[g, h] = [g_L].$$

CONSTRUCTION OF D : DEFINING $[g, h]$

- Otherwise, there exists a $*$ -gate p with children p_L and p_R in a rightmost path from g to h such that $\deg(p) \geq \frac{1}{2}(\deg(g) + \deg(h)) > \deg(p_R)$.
- Then, we have:

$$[g, h] = \sum_p [g, p] \cdot [p_L] \cdot [p_R, h]$$

where the sum ranges over all gates p satisfying the above condition.

$\deg(g)$ stands for degree of gate g

CONSTRUCTION OF D : DEFINING $[g, h]$

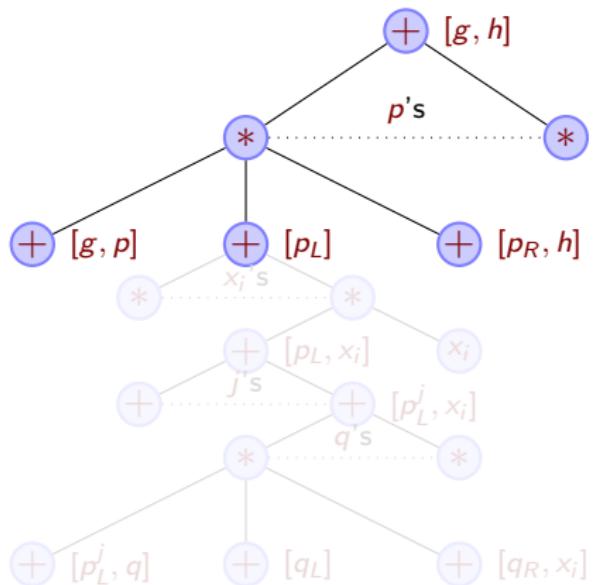
- Otherwise, there exists a $*$ -gate p with children p_L and p_R in a rightmost path from g to h such that $\deg(p) \geq \frac{1}{2}(\deg(g) + \deg(h)) > \deg(p_R)$.
- Then, we have:

$$[g, h] = \sum_p [g, p] \cdot [p_L] \cdot [p_R, h]$$

where the sum ranges over all gates p satisfying the above condition.

$\deg(g)$ stands for degree of gate g

CONSTRUCTION OF D : DEFINING $[g, h]$



$$[g, h] = \sum_p [g, p][p_L][p_R, h].$$

$$\deg([g, h]) = \deg(g) - \deg(h)$$

$$\deg([p_L]) \leq \deg(g) - \deg(h)$$

$$[p_L] = \sum_i [p_L, x_i][x_i],$$

$$p_L = \sum_j p_L^j.$$

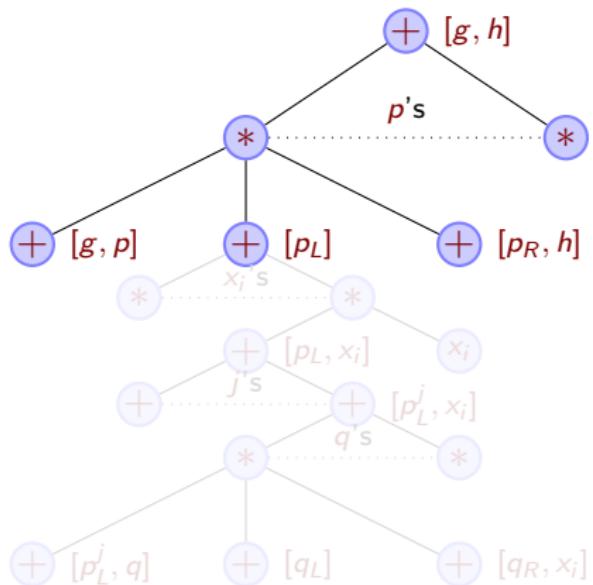
$$[p_L^j, x_i] = \sum_q [p_L^j, q][q_L][q_R, x_i].$$

$$\deg([p_L^j, q]) \leq \frac{1}{2} \deg(p_L)$$

$$\deg([q_L]) \leq \frac{1}{2} \deg(p_L)$$

$$\deg([q_R, x_i]) \leq \frac{1}{2} \deg(p_L)$$

CONSTRUCTION OF D : DEFINING $[g, h]$



$$[g, h] = \sum_p [g, p][p_L][p_R, h].$$

$$\deg([g, h]) = \deg(g) - \deg(h)$$

$$\deg([p_L]) \leq \deg(g) - \deg(h)$$

$$[p_L] = \sum_i [p_L, x_i][x_i],$$

$$p_L = \sum_j p_L^j.$$

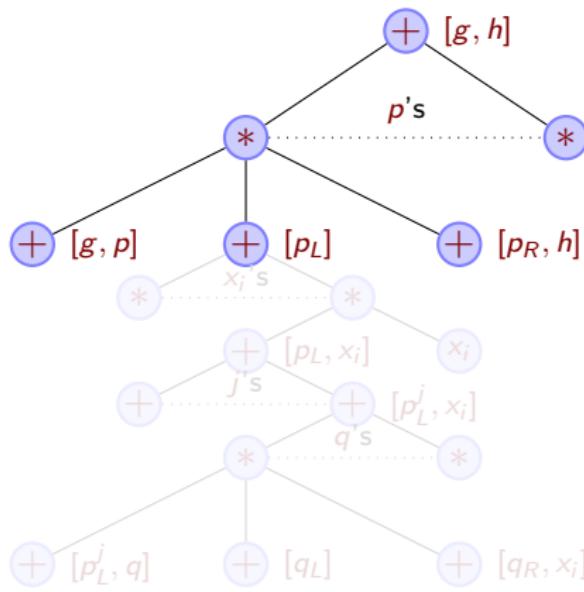
$$[p_L^j, x_i] = \sum_q [p_L^j, q][q_L][q_R, x_i].$$

$$\deg([p_L^j, q]) \leq \frac{1}{2} \deg(p_L)$$

$$\deg([q_L]) \leq \frac{1}{2} \deg(p_L)$$

$$\deg([q_R, x_i]) \leq \frac{1}{2} \deg(p_L)$$

CONSTRUCTION OF D : DEFINING $[g, h]$



$$[g, h] = \sum_p [g, p][p_L][p_R, h].$$

$$\deg([g, h]) = \deg(g) - \deg(h)$$

$$\deg([g, p]) \leq \frac{1}{2}(\deg(g) - \deg(h))$$

$$\deg([p_L]) \leq \deg(g) - \deg(h)$$

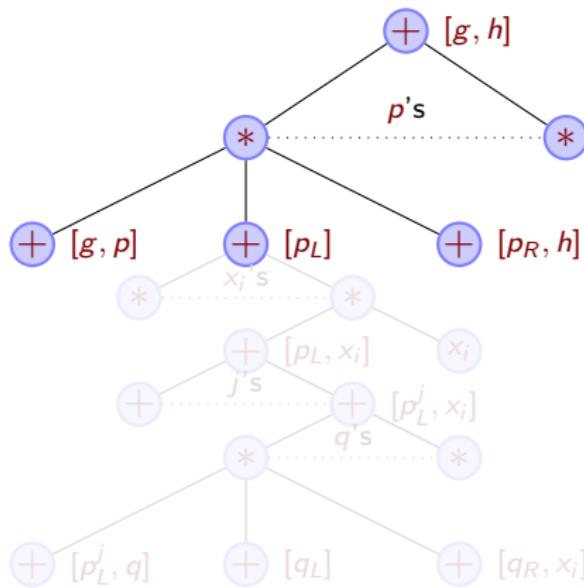
$$[p_L] = \sum_i [p_L, x_i][x_i],$$

$$p_L = \sum_j p_L^j.$$

$$[p_L^j, x_i] = \sum_q [p_L^j, q][q_L][q_R, x_i].$$

$$\deg([p_L^j, q]) \leq \frac{1}{2} \deg(p_L)$$

CONSTRUCTION OF D : DEFINING $[g, h]$



$$[g, h] = \sum_p [g, p][p_L][p_R, h].$$

$$\deg([g, h]) = \deg(g) - \deg(h)$$

$$\deg([p_R, h]) \leq \frac{1}{2}(\deg(g) - \deg(h))$$

$$\deg([p_L]) \leq \deg(g) - \deg(h)$$

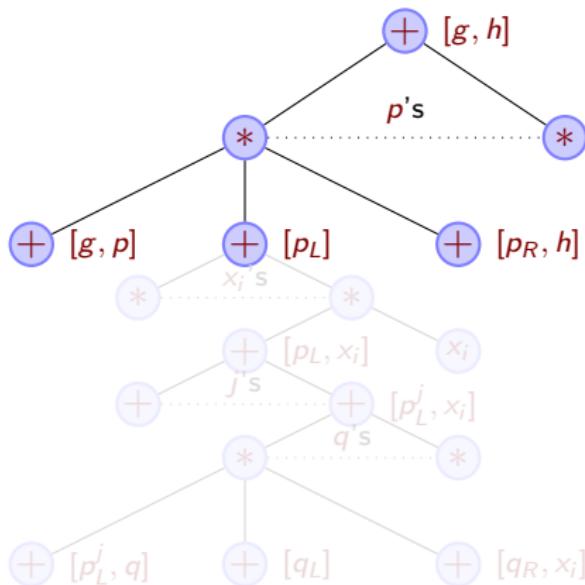
$$[p_L] = \sum_i [p_L, x_i][x_i],$$

$$p_L = \sum_j p_L^j.$$

$$[p_L^j, x_i] = \sum_q [p_L^j, q][q_L][q_R, x_i].$$

$$\deg([p_L^j, q]) \leq \frac{1}{2} \deg(p_L)$$

CONSTRUCTION OF D : DEFINING $[g, h]$

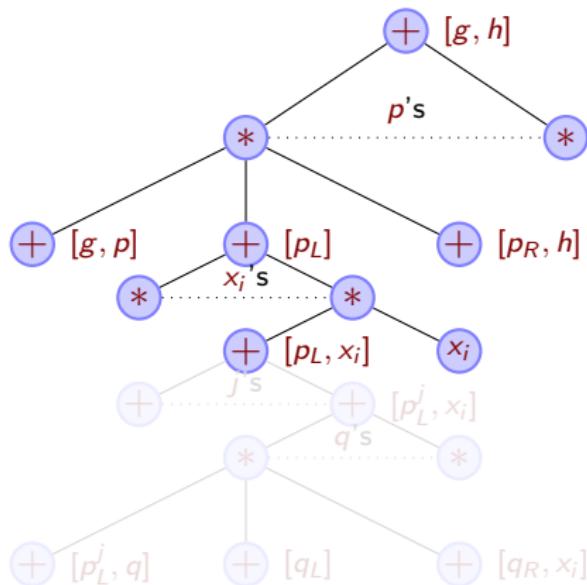


$$[g, h] = \sum_p [g, p][p_L][p_R, h].$$

$$\deg([g, h]) = \deg(g) - \deg(h)$$

$$\deg([p_L]) \leq \deg(g) - \deg(h)$$

CONSTRUCTION OF D : DEFINING $[g, h]$



$$[g, h] = \sum_p [g, p][p_L][p_R, h].$$

$$\deg([g, h]) = \deg(g) - \deg(h)$$

$$\deg([p_L]) \leq \deg(g) - \deg(h)$$

$$[p_L] = \sum_i [p_L, x_i][x_i],$$

$$p_L = \sum_j p_L^j.$$

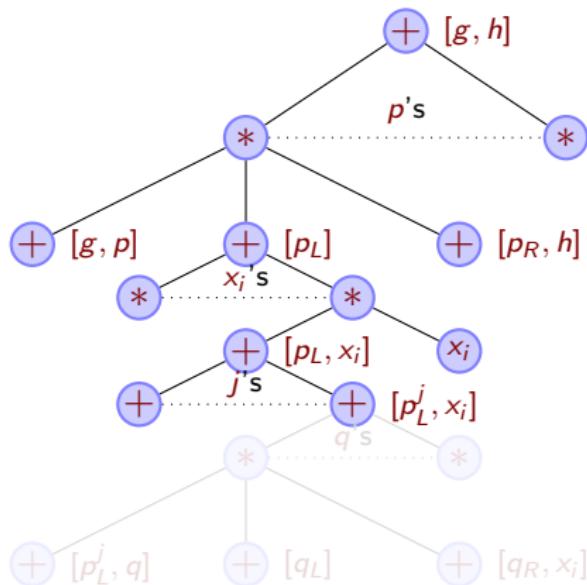
$$[p_L^j, x_i] = \sum_q [p_L^j, q][q_L][q_R, x_i].$$

$$\deg([p_L^j, q]) \leq \frac{1}{2} \deg(p_L)$$

$$\deg([q_L]) \leq \frac{1}{2} \deg(p_L)$$

$$\deg([q_R, x_i]) \leq \frac{1}{2} \deg(p_L)$$

CONSTRUCTION OF D : DEFINING $[g, h]$



$$\deg([g, h]) = \deg(g) - \deg(h)$$

$$\deg([p_L]) \leq \deg(g) - \deg(h)$$

$$[p_L] = \sum_i [p_L, x_i][x_i],$$

$$p_L = \sum_j p_L^j.$$

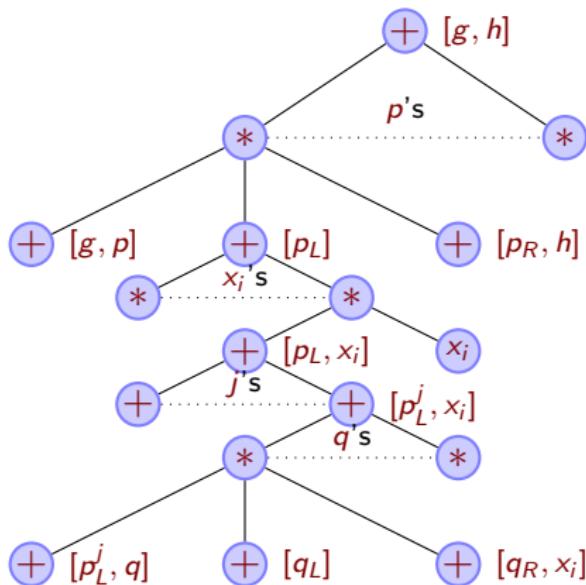
$$[p_L^j, x_i] = \sum_q [p_L^j, q][q_L][q_R, x_i].$$

$$\deg([p_L^j, q]) \leq \frac{1}{2} \deg(p_L)$$

$$\deg([q_L]) \leq \frac{1}{2} \deg(p_L)$$

$$\deg([q_R, x_i]) \leq \frac{1}{2} \deg(p_L)$$

CONSTRUCTION OF D : DEFINING $[g, h]$



$$[g, h] = \sum_p [g, p][p_L][p_R, h].$$

$$\deg([g, h]) = \deg(g) - \deg(h)$$

$$\deg([p_L]) \leq \deg(g) - \deg(h)$$

$$[p_L] = \sum_i [p_L, x_i][x_i],$$

$$p_L = \sum_j p_L^j.$$

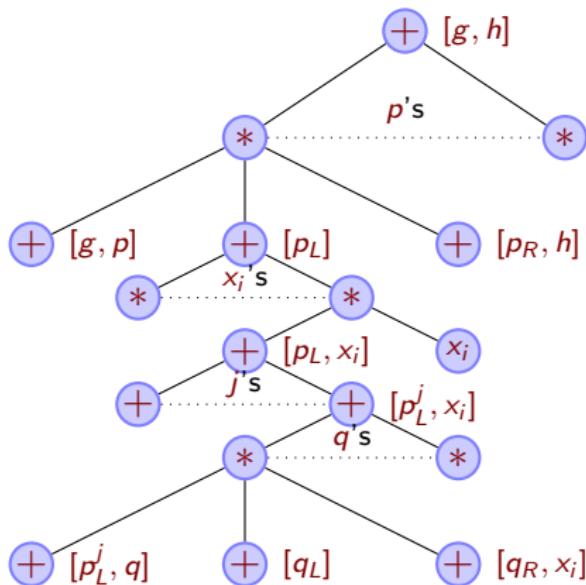
$$[p_L^j, x_i] = \sum_q [p_L^j, q][q_L][q_R, x_i].$$

$$\deg([p_L^j, q]) \leq \frac{1}{2} \deg(p_L)$$

$$\deg([q_L]) \leq \frac{1}{2} \deg(p_L)$$

$$\deg([q_R, x_i]) \leq \frac{1}{2} \deg(p_L)$$

CONSTRUCTION OF D : DEFINING $[g, h]$



$$[g, h] = \sum_p [g, p][p_L][p_R, h].$$

$$\deg([g, h]) = \deg(g) - \deg(h)$$

$$\deg([p_L]) \leq \deg(g) - \deg(h)$$

$$[p_L] = \sum_i [p_L, x_i][x_i],$$

$$p_L = \sum_j p_L^j.$$

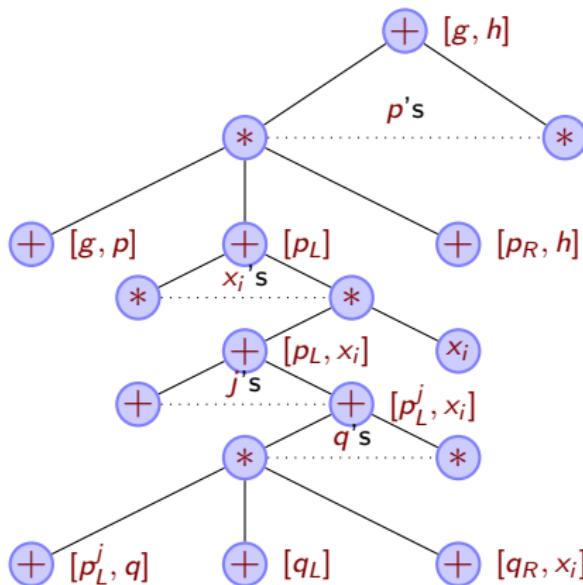
$$[p_L^j, x_i] = \sum_q [p_L^j, q][q_L][q_R, x_i].$$

$$\deg([p_L^j, q]) \leq \frac{1}{2} \deg(p_L)$$

$$\deg([q_L]) \leq \frac{1}{2} \deg(p_L)$$

$$\deg([q_R, x_i]) \leq \frac{1}{2} \deg(p_L)$$

CONSTRUCTION OF D : DEFINING $[g, h]$



$$[g, h] = \sum_p [g, p][p_L][p_R, h].$$

$$\deg([g, h]) = \deg(g) - \deg(h)$$

$$\deg([p_L]) \leq \deg(g) - \deg(h)$$

$$[p_L] = \sum_i [p_L, x_i][x_i],$$

$$p_L = \sum_j p_L^j.$$

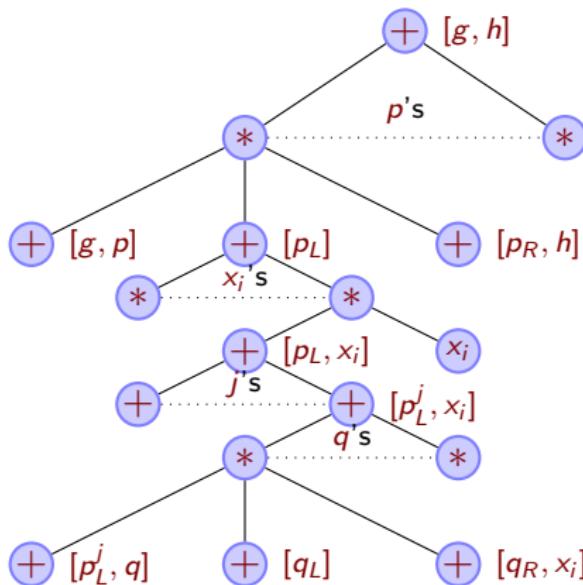
$$[p_L^j, x_i] = \sum_q [p_L^j, q][q_L][q_R, x_i].$$

$$\deg([p_L^j, q]) \leq \frac{1}{2} \deg(p_L)$$

$$\deg([q_L]) \leq \frac{1}{2} \deg(p_L)$$

$$\deg([q_R, x_i]) \leq \frac{1}{2} \deg(p_L)$$

CONSTRUCTION OF D : DEFINING $[g, h]$



$$[g, h] = \sum_p [g, p][p_L][p_R, h].$$

$$\deg([g, h]) = \deg(g) - \deg(h)$$

$$\deg([p_L]) \leq \deg(g) - \deg(h)$$

$$[p_L] = \sum_i [p_L, x_i][x_i],$$

$$p_L = \sum_j p_L^j.$$

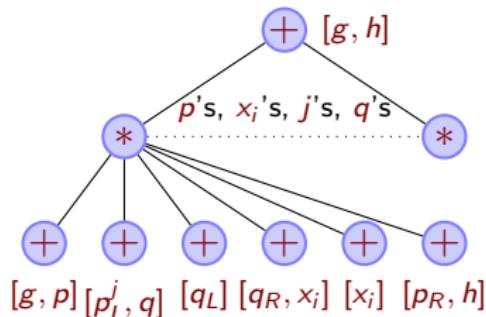
$$[p_L^j, x_i] = \sum_q [p_L^j, q][q_L][q_R, x_i].$$

$$\deg([p_L^j, q]) \leq \frac{1}{2} \deg(p_L)$$

$$\deg([q_L]) \leq \frac{1}{2} \deg(p_L)$$

$$\deg([q_R, x_i]) \leq \frac{1}{2} \deg(p_L)$$

CONSTRUCTION OF D : DEFINING $[g, h]$



Flatten the subcircuit to write $[g, h]$ as:

$$[g, h] = \sum_p \sum_i \sum_j \sum_q$$

$$[g, p][p_{L,j}, q][q_L][q_R, x_i][x_i][p_R, h]$$

with degree of each of the six polynomials in the product bounded by $\frac{1}{2} \deg([g, h])$.

CONSTRUCTION OF D

- By adding dummy $+$ -gates and merging adjacent $+$ -gates, it can be ensured that the circuit has alternating layers of $+$ - and $*$ -gates.
- The size of resulting circuit is $t^{O(1)}$.
- Since the degree of children of a $*$ -gate is at most half of the degree of the gate, the depth of the circuit D is $\leq 2 \log d$.

CONSTRUCTION OF D

- By adding dummy $+$ -gates and merging adjacent $+$ -gates, it can be ensured that the circuit has alternating layers of $+$ - and $*$ -gates.
- The size of resulting circuit is $t^{O(1)}$.
- Since the degree of children of a $*$ -gate is at most half of the degree of the gate, the depth of the circuit D is $\leq 2 \log d$.

REPLACING D

- We now replace D by a depth four circuit.
- The circuit is defined by cutting D in two halves and replacing each half by a depth two circuit.

REPLACING D

- We now replace D by a depth four circuit.
- The circuit is defined by cutting D in two halves and replacing each half by a depth two circuit.

CUTTING D

- Let ℓ be any function such that $\ell \leq \frac{d+d \log \frac{d}{n}}{\log t}$ and $\ell = \omega(1)$.
- Let $u = \frac{1}{2} \log_6 \ell$.
- Cut D into two halves with top half consisting of u layers of $*$ -gates with the bottom layer being of $*$ -gates.
- Let g_1, g_2, \dots, g_k be the output gates of the bottom layer.
- Let the polynomial computed by gate g_i be $P_i(x_1, x_2, \dots, x_n)$.
- The top layer can be viewed as computing a polynomial in k new variables; let this be $P_0(y_1, y_2, \dots, y_k)$.
- Then:

$$P(x_1, \dots, x_n) = P_0(P_1(x_1, \dots, x_n), P_2(x_1, \dots, x_n), \dots, P_k(x_1, \dots, x_n)).$$

CUTTING D

- Let ℓ be any function such that $\ell \leq \frac{d+d \log \frac{d}{n}}{\log t}$ and $\ell = \omega(1)$.
- Let $u = \frac{1}{2} \log_6 \ell$.
- Cut D into two halves with top half consisting of u layers of $*$ -gates with the bottom layer being of $*$ -gates.
- Let g_1, g_2, \dots, g_k be the output gates of the bottom layer.
- Let the polynomial computed by gate g_i be $P_i(x_1, x_2, \dots, x_n)$.
- The top layer can be viewed as computing a polynomial in k new variables; let this be $P_0(y_1, y_2, \dots, y_k)$.
- Then:

$$P(x_1, \dots, x_n) = P_0(P_1(x_1, \dots, x_n), P_2(x_1, \dots, x_n), \dots, P_k(x_1, \dots, x_n)).$$

CUTTING D

- Let ℓ be any function such that $\ell \leq \frac{d+d \log \frac{d}{n}}{\log t}$ and $\ell = \omega(1)$.
- Let $u = \frac{1}{2} \log_6 \ell$.
- Cut D into two halves with top half consisting of u layers of $*$ -gates with the bottom layer being of $*$ -gates.
- Let g_1, g_2, \dots, g_k be the output gates of the bottom layer.
- Let the polynomial computed by gate g_i be $P_i(x_1, x_2, \dots, x_n)$.
- The top layer can be viewed as computing a polynomial in k new variables; let this be $P_0(y_1, y_2, \dots, y_k)$.
- Then:

$$P(x_1, \dots, x_n) = P_0(P_1(x_1, \dots, x_n), P_2(x_1, \dots, x_n), \dots, P_k(x_1, \dots, x_n)).$$

CUTTING D

- Let ℓ be any function such that $\ell \leq \frac{d+d \log \frac{d}{n}}{\log t}$ and $\ell = \omega(1)$.
- Let $u = \frac{1}{2} \log_6 \ell$.
- Cut D into two halves with top half consisting of u layers of $*$ -gates with the bottom layer being of $*$ -gates.
- Let g_1, g_2, \dots, g_k be the output gates of the bottom layer.
- Let the polynomial computed by gate g_i be $P_i(x_1, x_2, \dots, x_n)$.
- The top layer can be viewed as computing a polynomial in k new variables; let this be $P_0(y_1, y_2, \dots, y_k)$.
- Then:

$$P(x_1, \dots, x_n) = P_0(P_1(x_1, \dots, x_n), P_2(x_1, \dots, x_n), \dots, P_k(x_1, \dots, x_n)).$$

THE CIRCUIT E

- A direct counting shows that each P_j , $0 \leq j \leq k$, can be replaced by a depth two circuit of size $2^{o(d+d \log \frac{n}{d})}$.
- Since $k = 2^{o(d+d \log \frac{n}{d})}$, the resulting depth four circuit, E , is of size $2^{o(d+d \log \frac{n}{d})}$.
- The fanin of second layer of $*$ -gates in E is at most $6^u = \sqrt{\ell}$ which is any small function in $\omega(1)$.
- The fanin of bottom layer of $*$ -gates in E is at most $\frac{d}{2^u} = o(d)$.

THE CIRCUIT E

- A direct counting shows that each P_j , $0 \leq j \leq k$, can be replaced by a depth two circuit of size $2^{o(d+d \log \frac{n}{d})}$.
- Since $k = 2^{o(d+d \log \frac{n}{d})}$, the resulting depth four circuit, E , is of size $2^{o(d+d \log \frac{n}{d})}$.
- The fanin of second layer of $*$ -gates in E is at most $6^u = \sqrt{\ell}$ which is any small function in $\omega(1)$.
- The fanin of bottom layer of $*$ -gates in E is at most $\frac{d}{2^u} = o(d)$.

THE CIRCUIT E

- A direct counting shows that each P_j , $0 \leq j \leq k$, can be replaced by a depth two circuit of size $2^{o(d+d \log \frac{n}{d})}$.
- Since $k = 2^{o(d+d \log \frac{n}{d})}$, the resulting depth four circuit, E , is of size $2^{o(d+d \log \frac{n}{d})}$.
- The fanin of second layer of $*$ -gates in E is at most $6^u = \sqrt{\ell}$ which is any small function in $\omega(1)$.
- The fanin of bottom layer of $*$ -gates in E is at most $\frac{d}{2^u} = o(d)$.

REDUCING DEPTH TO 3

THEOREM (GUPTA-KAMATH-KAYAL-SAPTHARISHI 2013)

If polynomial $P(x_1, \dots, x_n)$ of degree d is computable by an arithmetic circuit of size $s = 2^{o(d+d \log \frac{n}{d})}$, then it can also be computed by an arithmetic circuit of size $s^{O(1)}$ of depth 3 if the underlying field has characteristic zero or large ($= \Omega(\log s)$).

PROOF OUTLINE

- Replace each \prod layer of a depth four circuit by $\sum \wedge \sum$ layers resulting in a $\sum \wedge \sum \wedge \sum$ circuit using [Fischer 1994]:

$$\prod_{j=1}^n x_j = \frac{1}{2^{n-1} n!} \sum_{r_2, \dots, r_n \in \{-1, 1\}} (-1)^{wt(r)} (x_1 + \sum_{j=2}^n r_j x_j)^n,$$

where $wt(r) = |\{j \mid r_j = -1\}|$. This works for $\text{char} = 0$ or $> n$.

- Replace $\wedge \sum \wedge$ by $\sum \prod \sum$ resulting in $\sum \prod \sum$ circuit using [Saxena 2008]:

$$(\alpha_1 x_1^{\beta_1} + \alpha_2 x_2^{\beta_2} + \dots + \alpha_n x_n^{\beta_n})^d = \text{degree } d \text{ coefficient of } d! \cdot \prod_{j=1}^n e^{\alpha_j x_j^{\beta_j} z}.$$

This works for $\text{char} = 0$ or $> d$.

PROOF OUTLINE

- Replace each \prod layer of a depth four circuit by $\sum \wedge \sum$ layers resulting in a $\sum \wedge \sum \wedge \sum$ circuit using [Fischer 1994]:

$$\prod_{j=1}^n x_j = \frac{1}{2^{n-1} n!} \sum_{r_2, \dots, r_n \in \{-1, 1\}} (-1)^{wt(r)} (x_1 + \sum_{j=2}^n r_j x_j)^n,$$

where $wt(r) = |\{j \mid r_j = -1\}|$. This works for $\text{char} = 0$ or $> n$.

- Replace $\wedge \sum \wedge$ by $\sum \prod \sum$ resulting in $\sum \prod \sum$ circuit using [Saxena 2008]:

$$(\alpha_1 x_1^{\beta_1} + \alpha_2 x_2^{\beta_2} + \dots + \alpha_n x_n^{\beta_n})^d = \text{degree } d \text{ coefficient of } d! \cdot \prod_{j=1}^n e^{\alpha_j x_j^{\beta_j} z}.$$

This works for $\text{char} = 0$ or $> d$.

OUTLINE

1 COMPUTATION OVER RINGS

- Arithmetic Circuit Model
- Generalizing Arithmetic Circuits

2 CLASSES P AND NP

3 DEPTH REDUCTION

4 STATUS OF LOWER BOUNDS

5 POLYNOMIAL IDENTITY TESTING

6 LPIT AND LOWER BOUNDS

7 ALGORITHMS FOR 2-PIT AND 3-PIT

LOWER BOUNDS ON PERMANENT AND DETERMINANT

[JERRUM-SNIR 1982] Any **monotone** circuit family computing permanent is of exponential size.

- Monotone circuits are circuits with no negative constant.

[SHPILKA-WIGDERSON 1999] Any **depth three** circuit family computing permanent (or even determinant) over \mathbb{Q} is of size $\Omega(n^2)$.

[GRIGORIEV-RAZBOROV 2000] Any **depth three** circuit family computing permanent or determinant over a finite field is of exponential size.

LOWER BOUNDS ON PERMANENT AND DETERMINANT

[JERRUM-SNIR 1982] Any **monotone** circuit family computing permanent is of exponential size.

- Monotone circuits are circuits with no negative constant.

[SHPILKA-WIGDERSON 1999] Any **depth three** circuit family computing permanent (or even determinant) over \mathbb{Q} is of size $\Omega(n^2)$.

[GRIGORIEV-RAZBOROV 2000] Any **depth three** circuit family computing permanent or determinant over a finite field is of exponential size.

LOWER BOUNDS ON PERMANENT AND DETERMINANT

[JERRUM-SNIR 1982] Any **monotone** circuit family computing permanent is of exponential size.

- Monotone circuits are circuits with no negative constant.

[SHPILKA-WIGDERSON 1999] Any **depth three** circuit family computing permanent (or even determinant) over \mathbb{Q} is of size $\Omega(n^2)$.

[GRIGORIEV-RAZBOROV 2000] Any **depth three** circuit family computing permanent or determinant over a finite field is of exponential size.

LOWER BOUNDS ON PERMANENT AND DETERMINANT

[RAZ 2004] Any **multilinear formula** family computing permanent or determinant is of size $n^{\Omega(\log n)}$.

- Formulas are circuits with **outdegree** one.
- Multilinear formulas are formulas in which every gate computes a multilinear polynomial.

[KAYAL-SAHA 2014] Any depth three circuit family of bottom fanin $\leq r$ computing a polynomial family in **VP** of degree d in n variables over fields of characteristic zero, is of size $n^{\Omega(\frac{d}{r})}$.

[KAYAL-LIMAYE-SAHA-SRINIVASAN 2014] $2^{\Omega(\sqrt{n} \log n)}$ lower bound on **homogeneous** depth four circuits computing permanent over characteristic zero.

A circuit is **homogeneous** if every intermediate polynomial is homogeneous.

LOWER BOUNDS ON PERMANENT AND DETERMINANT

[RAZ 2004] Any **multilinear formula** family computing permanent or determinant is of size $n^{\Omega(\log n)}$.

- Formulas are circuits with **outdegree** one.
- Multilinear formulas are formulas in which every gate computes a multilinear polynomial.

[KAYAL-SAHA 2014] Any depth three circuit family of bottom fanin $\leq r$ computing a polynomial family in **VP** of degree d in n variables over fields of characteristic zero, is of size $n^{\Omega(\frac{d}{r})}$.

[KAYAL-LIMAYE-SAHA-SRINIVASAN 2014] $2^{\Omega(\sqrt{n} \log n)}$ lower bound on **homogeneous** depth four circuits computing permanent over characteristic zero.

A circuit is **homogeneous** if every intermediate polynomial is homogeneous.

LOWER BOUNDS ON PERMANENT AND DETERMINANT

[RAZ 2004] Any **multilinear formula** family computing permanent or determinant is of size $n^{\Omega(\log n)}$.

- Formulas are circuits with **outdegree** one.
- Multilinear formulas are formulas in which every gate computes a multilinear polynomial.

[KAYAL-SAHA 2014] Any depth three circuit family of bottom fanin $\leq r$ computing a polynomial family in **VP** of degree d in n variables over fields of characteristic zero, is of size $n^{\Omega(\frac{d}{r})}$.

[KAYAL-LIMAYE-SAHA-SRINIVASAN 2014] $2^{\Omega(\sqrt{n} \log n)}$ lower bound on **homogeneous** depth four circuits computing permanent over characteristic zero.

A circuit is **homogeneous** if every intermediate polynomial is homogeneous.

OUTLINE

1 COMPUTATION OVER RINGS

- Arithmetic Circuit Model
- Generalizing Arithmetic Circuits

2 CLASSES P AND NP

3 DEPTH REDUCTION

4 STATUS OF LOWER BOUNDS

5 POLYNOMIAL IDENTITY TESTING

6 LPIT AND LOWER BOUNDS

7 ALGORITHMS FOR 2-PIT AND 3-PIT

DEFINITIONS

PIT

Given an arithmetic circuit of size s over ring R , test if the polynomial computed by the circuit is non-zero.

Low DEGREE PIT (LPIT)

Given an arithmetic circuit of size s over ring R computing a polynomial of degree $\leq s$, test if the polynomial computed by the circuit is non-zero.

DEFINITIONS

PIT

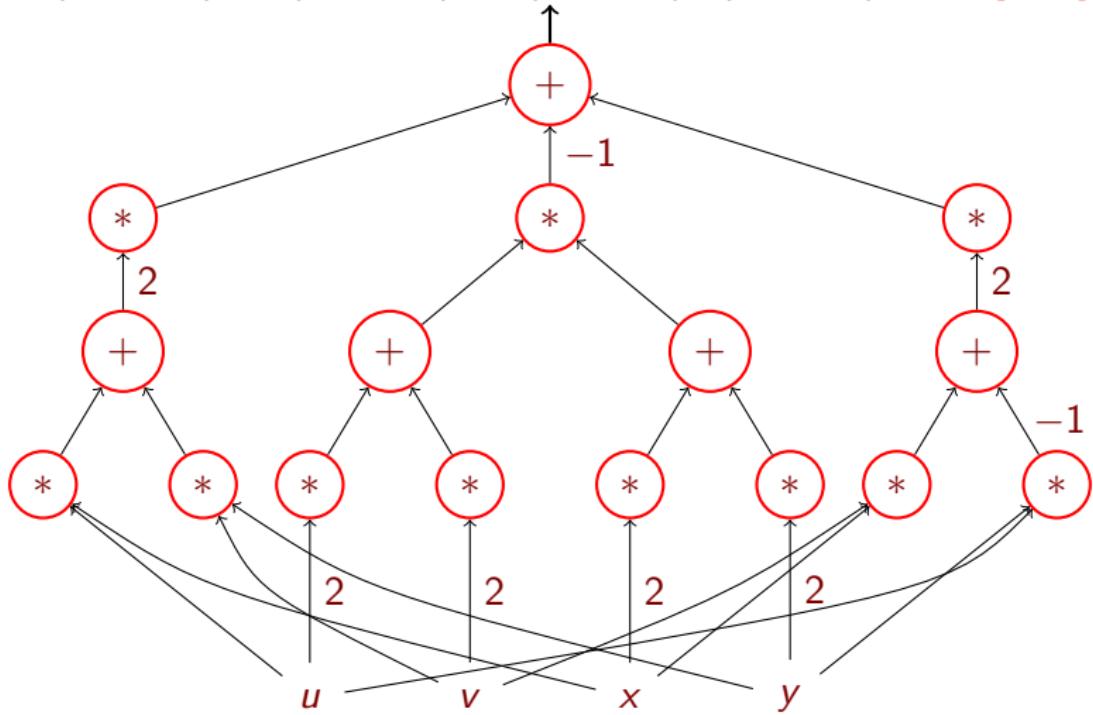
Given an arithmetic circuit of size s over ring R , test if the polynomial computed by the circuit is non-zero.

LOW DEGREE PIT (LPIT)

Given an arithmetic circuit of size s over ring R computing a polynomial of degree $\leq s$, test if the polynomial computed by the circuit is non-zero.

AN EXAMPLE

Is $(ux + vy)^2 + (vx - uy)^2 - (u^2 + v^2) \cdot (x^2 + y^2) \neq 0$? [NO!]



APPLICATIONS

BIPARTITE MATCHING : for graph $G = (U, V, E)$, check if

$$\det \begin{bmatrix} e_{1,1}x_{1,1} & \cdots & e_{1,n}x_{1,n} \\ \vdots & \ddots & \vdots \\ e_{n,1}x_{n,1} & \cdots & e_{n,n}x_{n,n} \end{bmatrix} \neq 0$$

over any field, where $E = [e_{i,j}]$. An example of LPIT.

PRIMALITY TESTING : for number n , check if

$$(x + y)^n = x^n + y^n$$

over ring $\mathbb{Z}_n[x, y]/(x^r - 1, y^s - 1)$ for suitable r and s , both $\log^{O(1)} n$.

APPLICATIONS

BIPARTITE MATCHING : for graph $G = (U, V, E)$, check if

$$\det \begin{bmatrix} e_{1,1}x_{1,1} & \cdots & e_{1,n}x_{1,n} \\ \vdots & \ddots & \vdots \\ e_{n,1}x_{n,1} & \cdots & e_{n,n}x_{n,n} \end{bmatrix} \neq 0$$

over any field, where $E = [e_{i,j}]$. An example of LPIT.

PRIMALITY TESTING : for number n , check if

$$(x + y)^n = x^n + y^n$$

over ring $Z_n[x, y]/(x^r - 1, y^s - 1)$ for suitable r and s , both $\log^{O(1)} n$.

COMPLEXITY OF PIT

A number of **randomized polynomial time** algorithms are known for the problem.

- The simplest one is by [Schwartz, Zippel 1979]: Substitute random values from a small subset of R (using a small extension of R if required) for each variable, evaluate the circuit, and output NON-ZERO iff the result is a non-zero number.
- Others are [Chen-Kao 1997], [Lewis-Vadhan 1998], [A-Biswas 1999],
....

COMPLEXITY OF PIT

A number of **randomized polynomial time** algorithms are known for the problem.

- The simplest one is by [Schwartz, Zippel 1979]: Substitute random values from a small subset of R (using a small extension of R if required) for each variable, evaluate the circuit, and output NON-ZERO iff the result is a non-zero number.
- Others are [Chen-Kao 1997], [Lewis-Vadhan 1998], [A-Biswas 1999],
....

COMPLEXITY OF PIT

A number of **randomized polynomial time** algorithms are known for the problem.

- The simplest one is by [Schwartz, Zippel 1979]: Substitute random values from a small subset of R (using a small extension of R if required) for each variable, evaluate the circuit, and output NON-ZERO iff the result is a non-zero number.
- Others are [Chen-Kao 1997], [Lewis-Vadhan 1998], [A-Biswas 1999],
....

DETERMINISTIC ALGORITHM FOR PIT

OPEN QUESTION

Is there a **deterministic** polynomial time algorithm for PIT?

- Long-standing open problem.
- A positive answer also yields a lower bound.

DETERMINISTIC ALGORITHM FOR PIT

OPEN QUESTION

Is there a **deterministic** polynomial time algorithm for PIT?

- Long-standing open problem.
- A positive answer also yields a lower bound.

DETERMINISTIC ALGORITHM FOR PIT

OPEN QUESTION

Is there a **deterministic** polynomial time algorithm for PIT?

- Long-standing open problem.
- A positive answer also yields a lower bound.

TWO TYPES OF DETERMINISTIC ALGORITHMS FOR PIT

WHITE Box

A **white-box** time $t(n)$ algorithm for PIT is a deterministic algorithm solving the problem in time at most $t(n)$.

BLACK Box

A **black-box** time $t(n)$ algorithm for PIT is a deterministic algorithm running in time $t(n)$ that, given an arithmetic circuit, determines if it computes non-zero polynomial with access only to input-output lines and size of the circuit.

TWO TYPES OF DETERMINISTIC ALGORITHMS FOR PIT

WHITE Box

A **white-box** time $t(n)$ algorithm for PIT is a deterministic algorithm solving the problem in time at most $t(n)$.

BLACK Box

A **black-box** time $t(n)$ algorithm for PIT is a deterministic algorithm running in time $t(n)$ that, given an arithmetic circuit, determines if it computes non-zero polynomial with access only to input-output lines and size of the circuit.

OUTLINE

1 COMPUTATION OVER RINGS

- Arithmetic Circuit Model
- Generalizing Arithmetic Circuits

2 CLASSES P AND NP

3 DEPTH REDUCTION

4 STATUS OF LOWER BOUNDS

5 POLYNOMIAL IDENTITY TESTING

6 LPIT AND LOWER BOUNDS

7 ALGORITHMS FOR 2-PIT AND 3-PIT

LPIT AND LOWER BOUNDS I

THEOREM (KABANETS-IMPAGLIAZZO 2003)

If there exists a white-box polynomial-time algorithm for LPIT then $NEXP$ requires superpolynomial size arithmetic circuits.

LPIT AND LOWER BOUNDS I

PROOF.

- Assume **NEXP** has polynomial-size arithmetic circuits and **PIT** has a polynomial-time algorithm.
- Construct an **NP** machine to compute permanent that guesses the circuit for the permanent and verifies it recursively using **PIT**:
 - ▶ If $C(x_{1,1}, \dots, x_{1,n}, \dots, x_{n,1}, \dots, x_{n,n})$ is circuit for permanent of $n \times n$ matrices, then we can extract from it circuit C_j for permanent of $j \times j$ matrices for $j < n$.
 - ▶ Using LPIT, verify the correctness of C :

$$C_j(\vec{x}) = x_{1,1}C_{j-1}(\vec{x}_1) + \dots + x_{1,j}C_{j-1}(\vec{x}_j)$$

where \vec{x}_i drops first row and i th column.

- This implies **#P** is in **NP**. Since $\text{NEXP} = \text{#P}$ by assumption, we get $\text{NEXP} = \text{NP}$ contradicting time hierarchy theorem.

LPIT AND LOWER BOUNDS I

PROOF.

- Assume **NEXP** has polynomial-size arithmetic circuits and **PIT** has a polynomial-time algorithm.
- Construct an **NP** machine to compute permanent that guesses the circuit for the permanent and verifies it recursively using **PIT**:
 - ▶ If $C(x_{1,1}, \dots, x_{1,n}, \dots, x_{n,1}, \dots, x_{n,n})$ is circuit for permanent of $n \times n$ matrices, then we can extract from it circuit C_j for permanent of $j \times j$ matrices for $j < n$.
 - ▶ Using LPIT, verify the correctness of C :

$$C_j(\bar{x}) = x_{1,1}C_{j-1}(\bar{x}_1) + \dots + x_{1,j}C_{j-1}(\bar{x}_j)$$

where \bar{x}_i drops first row and i th column.

- This implies $\#P$ is in **NP**. Since $\text{NEXP} = \#P$ by assumption, we get $\text{NEXP} = \text{NP}$ contradicting time hierarchy theorem.

LPIT AND LOWER BOUNDS I

PROOF.

- Assume **NEXP** has polynomial-size arithmetic circuits and **PIT** has a polynomial-time algorithm.
- Construct an **NP** machine to compute permanent that guesses the circuit for the permanent and verifies it recursively using **PIT**:
 - ▶ If $C(x_{1,1}, \dots, x_{1,n}, \dots, x_{n,1}, \dots, x_{n,n})$ is circuit for permanent of $n \times n$ matrices, then we can extract from it circuit C_j for permanent of $j \times j$ matrices for $j < n$.
 - ▶ Using LPIT, verify the correctness of C :

$$C_j(\bar{x}) = x_{1,1}C_{j-1}(\bar{x}_1) + \dots + x_{1,j}C_{j-1}(\bar{x}_j)$$

where \bar{x}_i drops first row and i th column.

- This implies $\#P$ is in **NP**. Since $\text{NEXP} = \#P$ by assumption, we get $\text{NEXP} = \text{NP}$ contradicting time hierarchy theorem.

LPIT AND LOWER BOUNDS I

PROOF.

- Assume NEXP has polynomial-size arithmetic circuits and PIT has a polynomial-time algorithm.
- Construct an NP machine to compute permanent that guesses the circuit for the permanent and verifies it recursively using PIT:
 - ▶ If $C(x_{1,1}, \dots, x_{1,n}, \dots, x_{n,1}, \dots, x_{n,n})$ is circuit for permanent of $n \times n$ matrices, then we can extract from it circuit C_j for permanent of $j \times j$ matrices for $j < n$.
 - ▶ Using LPIT, verify the correctness of C :

$$C_j(\bar{x}) = x_{1,1} C_{j-1}(\bar{x}_1) + \dots + x_{1,j} C_{j-1}(\bar{x}_j)$$

where \bar{x}_i drops first row and i th column.

- This implies $\#\text{P}$ is in NP . Since $\text{NEXP} = \#\text{P}$ by assumption, we get $\text{NEXP} = \text{NP}$ contradicting time hierarchy theorem.

LPIT AND LOWER BOUNDS I

PROOF.

- Assume NEXP has polynomial-size arithmetic circuits and PIT has a polynomial-time algorithm.
- Construct an NP machine to compute permanent that guesses the circuit for the permanent and verifies it recursively using PIT:
 - ▶ If $C(x_{1,1}, \dots, x_{1,n}, \dots, x_{n,1}, \dots, x_{n,n})$ is circuit for permanent of $n \times n$ matrices, then we can extract from it circuit C_j for permanent of $j \times j$ matrices for $j < n$.
 - ▶ Using LPIT, verify the correctness of C :

$$C_j(\bar{x}) = x_{1,1} C_{j-1}(\bar{x}_1) + \dots + x_{1,j} C_{j-1}(\bar{x}_j)$$

where \bar{x}_i drops first row and i th column.

- This implies $\#\text{P}$ is in NP . Since $\text{NEXP} = \#\text{P}$ by assumption, we get $\text{NEXP} = \text{NP}$ contradicting time hierarchy theorem.

LPIT AND LOWER BOUNDS II

THEOREM (HEINTZ-SCHNORR 1980, A 2005)

If there exist a black-box polynomial-time algorithm for LPIT then E requires exponential size arithmetic circuits.

LPIT AND LOWER BOUNDS II

PROOF.

- Let \mathcal{A} be a black-box polynomial-time algorithm for LPIT.
- For a circuit of size s on n variables, \mathcal{A} will evaluate it on a sequence of inputs and accept iff any of the outputs in non-zero.
- Let these inputs be $(\alpha_{1,1}, \dots, \alpha_{1,n}), \dots, (\alpha_{t,1}, \dots, \alpha_{t,n})$ with $t = s^{O(1)}$.
- Let $m = \lceil \log(t+1) \rceil = O(\log s)$.
- Define polynomial r_m as:

$$r_m(x_1, x_2, \dots, x_m) = \sum_{S \subseteq [1, m]} c_S \prod_{i \in S} x_i.$$

- Coefficients $c_S \in F$ satisfy:

$$\sum_{S \subseteq [1, m]} c_S \prod_{i \in S} \alpha_{j,i} = 0$$

for every $1 \leq j \leq t$.

LPIT AND LOWER BOUNDS II

PROOF.

- Let \mathcal{A} be a black-box polynomial-time algorithm for LPIT.
- For a circuit of size s on n variables, \mathcal{A} will evaluate it on a sequence of inputs and accept iff any of the outputs in non-zero.
- Let these inputs be $(\alpha_{1,1}, \dots, \alpha_{1,n}), \dots, (\alpha_{t,1}, \dots, \alpha_{t,n})$ with $t = s^{O(1)}$.
- Let $m = \lceil \log(t+1) \rceil = O(\log s)$.
- Define polynomial r_m as:

$$r_m(x_1, x_2, \dots, x_m) = \sum_{S \subseteq [1, m]} c_S \prod_{i \in S} x_i.$$

- Coefficients $c_S \in F$ satisfy:

$$\sum_{S \subseteq [1, m]} c_S \prod_{i \in S} \alpha_{j,i} = 0$$

for every $1 \leq j \leq t$.

LPIT AND LOWER BOUNDS II

PROOF.

- Let \mathcal{A} be a black-box polynomial-time algorithm for LPIT.
- For a circuit of size s on n variables, \mathcal{A} will evaluate it on a sequence of inputs and accept iff any of the outputs in non-zero.
- Let these inputs be $(\alpha_{1,1}, \dots, \alpha_{1,n}), \dots, (\alpha_{t,1}, \dots, \alpha_{t,n})$ with $t = s^{O(1)}$.
- Let $m = \lceil \log(t+1) \rceil = O(\log s)$.
- Define polynomial r_m as:

$$r_m(x_1, x_2, \dots, x_m) = \sum_{S \subseteq [1, m]} c_S \prod_{i \in S} x_i.$$

- Coefficients $c_S \in F$ satisfy:

$$\sum_{S \subseteq [1, m]} c_S \prod_{i \in S} \alpha_{j,i} = 0$$

for every $1 \leq j \leq t$.

LPIT AND LOWER BOUNDS II

- A non-zero r_m always exists since it has $\geq t + 1$ coefficients that satisfy t homogeneous linear equations.
- Polynomial r_m can be computed by exponential size arithmetic circuits.
- Circuit complexity of r_m is more than $s = 2^{\Omega(m)}$.

LPIT AND LOWER BOUNDS II

- A non-zero r_m always exists since it has $\geq t + 1$ coefficients that satisfy t homogeneous linear equations.
- Polynomial r_m can be computed by exponential size arithmetic circuits.
- Circuit complexity of r_m is more than $s = 2^{\Omega(m)}$.

LPIT AND LOWER BOUNDS II

- A non-zero r_m always exists since it has $\geq t + 1$ coefficients that satisfy t homogeneous linear equations.
- Polynomial r_m can be computed by exponential size arithmetic circuits.
- Circuit complexity of r_m is more than $s = 2^{\Omega(m)}$.

FIXED DEPTH PIT

DEPTH d PIT

d -PIT is the problem to decide if a given arithmetic circuit of depth d (alternating sums and products with top gate being sum) computes a non-zero polynomial.

d -PIT is a restriction of LPIT.

FIXED DEPTH PIT

DEPTH d PIT

d -PIT is the problem to decide if a given arithmetic circuit of depth d (alternating sums and products with top gate being sum) computes a non-zero polynomial.

d -PIT is a restriction of LPIT.

3-PIT AND LOWER BOUNDS

THEOREM (GUPTA-KAMATH-KAYAL-SAPTHARISHI 2013)

If there exist a polynomial-time black-box algorithm for 3-PIT then E requires exponential size arithmetic circuits if the underlying field has characteristic zero or large ($= \Omega(\log s)$).

THEOREM

If there exists a white-box polynomial-time algorithm for 3-PIT then NEXP requires superpolynomial size arithmetic circuits.

3-PIT AND LOWER BOUNDS

THEOREM (GUPTA-KAMATH-KAYAL-SAPTHARISHI 2013)

If there exist a polynomial-time black-box algorithm for 3-PIT then E requires exponential size arithmetic circuits if the underlying field has characteristic zero or large ($= \Omega(\log s)$).

THEOREM

If there exists a white-box polynomial-time algorithm for 3-PIT then \mathbf{NEXP} requires superpolynomial size arithmetic circuits.

OUTLINE

1 COMPUTATION OVER RINGS

- Arithmetic Circuit Model
- Generalizing Arithmetic Circuits

2 CLASSES P AND NP

3 DEPTH REDUCTION

4 STATUS OF LOWER BOUNDS

5 POLYNOMIAL IDENTITY TESTING

6 LPIT AND LOWER BOUNDS

7 ALGORITHMS FOR 2-PIT AND 3-PIT

THEOREM (FOLKLORE)

There exists a polynomial-time black-box algorithm for 2-PIT.

2-PIT

PROOF.

- A $\sum \prod$ circuit computes a sparse polynomial.
- Let C be the given $\sum \prod$ circuit of size s computing a polynomial of degree $\leq d$.
- One of the substitutions $(x_1, \dots, x_i, \dots, x_n) = (y, \dots, y^{(d+1)^{i-1} \pmod{r}}, \dots, y^{(d+1)^{n-1} \pmod{r}})$, $1 < r < s^2$, will ensure that all terms of the polynomial remain distinct.

2-PIT

PROOF.

- A $\sum \prod$ circuit computes a sparse polynomial.
- Let C be the given $\sum \prod$ circuit of size s computing a polynomial of degree $\leq d$.
- One of the substitutions $(x_1, \dots, x_i, \dots, x_n) = (y, \dots, y^{(d+1)^{i-1} \pmod r}, \dots, y^{(d+1)^{n-1} \pmod r})$, $1 < r < s^2$, will ensure that all terms of the polynomial remain distinct.

3-PIT WITH BOUNDED TOP FANIN

Sequence of solutions for 3-PIT with top sum gate of fanin k :

[DVIR-SHPILKA 2005] White-box $2^{(\log s)^k}$ time algorithm.

[KAYAL-SAXENA 2006] White-box $s^{O(k)}$ time algorithm.

[KARNIN-SHPILKA 2008] Black-box $s^{O(\log^k s)}$ time algorithm.

[SAXENA-SESHADRI 2009] Black-box $s^{k^3 \log s}$ time algorithm.

[KAYAL-SARAF 2009] Black-box s^{k^k} time algorithm over characteristic zero fields.

[SAXENA-SESHADRI 2011] Black-box $s^{O(k)}$ time algorithm.

[A-SAHA-SAPTHARISHI-SAXENA 2012] Black-box $s^{O(k)}$ time algorithm for zero or large characteristic fields.

3-PIT WITH BOUNDED TOP FANIN

Sequence of solutions for 3-PIT with top sum gate of fanin k :

[DVIR-SHPILKA 2005] White-box $2^{(\log s)^k}$ time algorithm.

[KAYAL-SAXENA 2006] White-box $s^{O(k)}$ time algorithm.

[KARNIN-SHPILKA 2008] Black-box $s^{O(\log^k s)}$ time algorithm.

[SAXENA-SESHADRI 2009] Black-box $s^{k^3 \log s}$ time algorithm.

[KAYAL-SARAF 2009] Black-box s^{k^k} time algorithm over characteristic zero fields.

[SAXENA-SESHADRI 2011] Black-box $s^{O(k)}$ time algorithm.

[A-SAHA-SAPTHARISHI-SAXENA 2012] Black-box $s^{O(k)}$ time algorithm for zero or large characteristic fields.

3-PIT WITH BOUNDED TOP FANIN

Sequence of solutions for 3-PIT with top sum gate of fanin k :

[DVIR-SHPILKA 2005] White-box $2^{(\log s)^k}$ time algorithm.

[KAYAL-SAXENA 2006] White-box $s^{O(k)}$ time algorithm.

[KARNIN-SHPILKA 2008] Black-box $s^{O(\log^k s)}$ time algorithm.

[SAXENA-SESHADRI 2009] Black-box $s^{k^3 \log s}$ time algorithm.

[KAYAL-SARAF 2009] Black-box s^{k^k} time algorithm over characteristic zero fields.

[SAXENA-SESHADRI 2011] Black-box $s^{O(k)}$ time algorithm.

[A-SAHA-SAPTHARISHI-SAXENA 2012] Black-box $s^{O(k)}$ time algorithm for zero or large characteristic fields.

3-PIT WITH BOUNDED TOP FANIN

Sequence of solutions for 3-PIT with top sum gate of fanin k :

[DVIR-SHPILKA 2005] White-box $2^{(\log s)^k}$ time algorithm.

[KAYAL-SAXENA 2006] White-box $s^{O(k)}$ time algorithm.

[KARNIN-SHPILKA 2008] Black-box $s^{O(\log^k s)}$ time algorithm.

[SAXENA-SESHADRI 2009] Black-box $s^{k^3 \log s}$ time algorithm.

[KAYAL-SARAF 2009] Black-box s^{k^k} time algorithm over characteristic zero fields.

[SAXENA-SESHADRI 2011] Black-box $s^{O(k)}$ time algorithm.

[A-SAHA-SAPTHARISHI-SAXENA 2012] Black-box $s^{O(k)}$ time algorithm for zero or large characteristic fields.

3-PIT WITH BOUNDED TOP FANIN

Sequence of solutions for 3-PIT with top sum gate of fanin k :

[DVIR-SHPILKA 2005] White-box $2^{(\log s)^k}$ time algorithm.

[KAYAL-SAXENA 2006] White-box $s^{O(k)}$ time algorithm.

[KARNIN-SHPILKA 2008] Black-box $s^{O(\log^k s)}$ time algorithm.

[SAXENA-SESHADRI 2009] Black-box $s^{k^3 \log s}$ time algorithm.

[KAYAL-SARAF 2009] Black-box s^{k^k} time algorithm over characteristic zero fields.

[SAXENA-SESHADRI 2011] Black-box $s^{O(k)}$ time algorithm.

[A-SAHA-SAPTHARISHI-SAXENA 2012] Black-box $s^{O(k)}$ time algorithm for zero or large characteristic fields.

3-PIT WITH BOUNDED TOP FANIN

Sequence of solutions for 3-PIT with top sum gate of fanin k :

[DVIR-SHPILKA 2005] White-box $2^{(\log s)^k}$ time algorithm.

[KAYAL-SAXENA 2006] White-box $s^{O(k)}$ time algorithm.

[KARNIN-SHPILKA 2008] Black-box $s^{O(\log^k s)}$ time algorithm.

[SAXENA-SESHADRI 2009] Black-box $s^{k^3 \log s}$ time algorithm.

[KAYAL-SARAF 2009] Black-box s^{k^k} time algorithm over characteristic zero fields.

[SAXENA-SESHADRI 2011] Black-box $s^{O(k)}$ time algorithm.

[A-SAHA-SAPTHARISHI-SAXENA 2012] Black-box $s^{O(k)}$ time algorithm for zero or large characteristic fields.

3-PIT WITH BOUNDED TOP FANIN

Sequence of solutions for 3-PIT with top sum gate of fanin k :

[DVIR-SHPILKA 2005] White-box $2^{(\log s)^k}$ time algorithm.

[KAYAL-SAXENA 2006] White-box $s^{O(k)}$ time algorithm.

[KARNIN-SHPILKA 2008] Black-box $s^{O(\log^k s)}$ time algorithm.

[SAXENA-SESHADRI 2009] Black-box $s^{k^3 \log s}$ time algorithm.

[KAYAL-SARAF 2009] Black-box s^{k^k} time algorithm over characteristic zero fields.

[SAXENA-SESHADRI 2011] Black-box $s^{O(k)}$ time algorithm.

[A-SAHA-SAPTHARISHI-SAXENA 2012] Black-box $s^{O(k)}$ time algorithm for zero or large characteristic fields.

JACOBIAN BASED ALGORITHM

- Let $P = \sum_{i=1}^k T_i$, $T_i = \prod_{j=1}^s L_{i,j}$ be the given circuit with $L_{i,j} = \alpha_{i,j,0} + \sum_{\ell=1}^n \alpha_{i,j,\ell} x_{\ell}$.
- Assume that $P \neq 0$ and T_i 's are algebraically independent:
 - There is no polynomial $Q(y_1, y_2, \dots, y_k)$ such that $Q(T_1, T_2, \dots, T_k) = 0$.
- For characteristic zero or $> s^k$: T_1, \dots, T_k are algebraically independent iff $J(T_1, T_2, \dots, T_k)$ has full rank, where

$$J(y_1, y_2, \dots, y_k) = \begin{bmatrix} \frac{\partial y_1}{\partial x_1} & \frac{\partial y_1}{\partial x_2} & \cdots & \frac{\partial y_1}{\partial x_n} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial y_k}{\partial x_1} & \frac{\partial y_k}{\partial x_2} & \cdots & \frac{\partial y_k}{\partial x_n} \end{bmatrix}.$$

JACOBIAN BASED ALGORITHM

- Let $P = \sum_{i=1}^k T_i$, $T_i = \prod_{j=1}^s L_{i,j}$ be the given circuit with $L_{i,j} = \alpha_{i,j,0} + \sum_{\ell=1}^n \alpha_{i,j,\ell} x_{\ell}$.
- Assume that $P \neq 0$ and T_i 's are algebraically independent:
 - There is no polynomial $Q(y_1, y_2, \dots, y_k)$ such that $Q(T_1, T_2, \dots, T_k) = 0$.
- For characteristic zero or $> s^k$: T_1, \dots, T_k are algebraically independent iff $J(T_1, T_2, \dots, T_k)$ has full rank, where

$$J(y_1, y_2, \dots, y_k) = \begin{bmatrix} \frac{\partial y_1}{\partial x_1} & \frac{\partial y_1}{\partial x_2} & \cdots & \frac{\partial y_1}{\partial x_n} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial y_k}{\partial x_1} & \frac{\partial y_k}{\partial x_2} & \cdots & \frac{\partial y_k}{\partial x_n} \end{bmatrix}.$$

JACOBIAN BASED ALGORITHM

- Let $P = \sum_{i=1}^k T_i$, $T_i = \prod_{j=1}^s L_{i,j}$ be the given circuit with $L_{i,j} = \alpha_{i,j,0} + \sum_{\ell=1}^n \alpha_{i,j,\ell} x_{\ell}$.
- Assume that $P \neq 0$ and T_i 's are algebraically independent:
 - There is no polynomial $Q(y_1, y_2, \dots, y_k)$ such that $Q(T_1, T_2, \dots, T_k) = 0$.
- For characteristic zero or $> s^k$: T_1, \dots, T_k are algebraically independent iff $J(T_1, T_2, \dots, T_k)$ has full rank, where

$$J(y_1, y_2, \dots, y_k) = \begin{bmatrix} \frac{\partial y_1}{\partial x_1} & \frac{\partial y_1}{\partial x_2} & \cdots & \frac{\partial y_1}{\partial x_n} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial y_k}{\partial x_1} & \frac{\partial y_k}{\partial x_2} & \cdots & \frac{\partial y_k}{\partial x_n} \end{bmatrix}.$$

JACOBIAN BASED ALGORITHM

- Therefore, $J(T_1, \dots, T_k)$ has rank k .

- We have:

$$\begin{aligned} J(T_1, T_2, \dots, T_k) &= \begin{bmatrix} \frac{\partial T_1}{\partial x_1} & \frac{\partial T_1}{\partial x_2} & \dots & \frac{\partial T_1}{\partial x_n} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial T_k}{\partial x_1} & \frac{\partial T_k}{\partial x_2} & \dots & \frac{\partial T_k}{\partial x_n} \end{bmatrix} \\ &= \begin{bmatrix} T_1 \sum_{j=1}^d \frac{\alpha_{1,j,1}}{L_{1,j}} & \dots & T_1 \sum_{j=1}^d \frac{\alpha_{1,j,n}}{L_{1,j}} \\ \vdots & \ddots & \vdots \\ T_k \sum_{j=1}^d \frac{\alpha_{k,j,1}}{L_{k,j}} & \dots & T_k \sum_{j=1}^d \frac{\alpha_{k,j,n}}{L_{k,j}} \end{bmatrix} \end{aligned}$$

JACOBIAN BASED ALGORITHM

- Therefore, $J(T_1, \dots, T_k)$ has rank k .
- We have:

$$\begin{aligned} J(T_1, T_2, \dots, T_k) &= \begin{bmatrix} \frac{\partial T_1}{\partial x_1} & \frac{\partial T_1}{\partial x_2} & \dots & \frac{\partial T_1}{\partial x_n} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial T_k}{\partial x_1} & \frac{\partial T_k}{\partial x_2} & \dots & \frac{\partial T_k}{\partial x_n} \end{bmatrix} \\ &= \begin{bmatrix} T_1 \sum_{j=1}^d \frac{\alpha_{1,j,1}}{L_{1,j}} & \dots & T_1 \sum_{j=1}^d \frac{\alpha_{1,j,n}}{L_{1,j}} \\ \vdots & \ddots & \vdots \\ T_k \sum_{j=1}^d \frac{\alpha_{k,j,1}}{L_{k,j}} & \dots & T_k \sum_{j=1}^d \frac{\alpha_{k,j,n}}{L_{k,j}} \end{bmatrix} \end{aligned}$$

JACOBIAN BASED ALGORITHM

- Assume, wlog, that columns corresponding to variables x_1, x_2, \dots, x_k have rank k .
- Let

$$\begin{aligned}\hat{P} &= \begin{vmatrix} T_1 \sum_{j=1}^d \frac{\alpha_{1,j,1}}{L_{1,j}} & \cdots & T_1 \sum_{j=1}^d \frac{\alpha_{1,j,k}}{L_{1,j}} \\ \vdots & \ddots & \vdots \\ T_k \sum_{j=1}^d \frac{\alpha_{k,j,1}}{L_{k,j}} & \cdots & T_k \sum_{j=1}^d \frac{\alpha_{k,j,k}}{L_{k,j}} \end{vmatrix} \\ &= \prod_{i=1}^k T_i \cdot \begin{vmatrix} \sum_{j=1}^d \frac{\alpha_{1,j,1}}{L_{1,j}} & \cdots & \sum_{j=1}^d \frac{\alpha_{1,j,k}}{L_{1,j}} \\ \vdots & \ddots & \vdots \\ \sum_{j=1}^d \frac{\alpha_{k,j,1}}{L_{k,j}} & \cdots & \sum_{j=1}^d \frac{\alpha_{k,j,k}}{L_{k,j}} \end{vmatrix} \\ &= \prod_{i=1}^k T_i \cdot R,\end{aligned}$$

where R is a sparse rational function.

JACOBIAN BASED ALGORITHM

- Assume, wlog, that columns corresponding to variables x_1, x_2, \dots, x_k have rank k .
- Let

$$\begin{aligned}\hat{P} &= \begin{vmatrix} T_1 \sum_{j=1}^d \frac{\alpha_{1,j,1}}{L_{1,j}} & \cdots & T_1 \sum_{j=1}^d \frac{\alpha_{1,j,k}}{L_{1,j}} \\ \vdots & \ddots & \vdots \\ T_k \sum_{j=1}^d \frac{\alpha_{k,j,1}}{L_{k,j}} & \cdots & T_k \sum_{j=1}^d \frac{\alpha_{k,j,k}}{L_{k,j}} \end{vmatrix} \\ &= \prod_{i=1}^k T_i \cdot \begin{vmatrix} \sum_{j=1}^d \frac{\alpha_{1,j,1}}{L_{1,j}} & \cdots & \sum_{j=1}^d \frac{\alpha_{1,j,k}}{L_{1,j}} \\ \vdots & \ddots & \vdots \\ \sum_{j=1}^d \frac{\alpha_{k,j,1}}{L_{k,j}} & \cdots & \sum_{j=1}^d \frac{\alpha_{k,j,k}}{L_{k,j}} \end{vmatrix} \\ &= \prod_{i=1}^k T_i \cdot R,\end{aligned}$$

where R is a sparse rational function.

JACOBIAN BASED ALGORITHM

- Since \hat{P} is a product of sparse polynomials and rational functions, the set of substitutions as used for 2-PIT will ensure that \hat{P} remains non-zero under one of them.
- For this substitution, the Jacobian has full rank and therefore the circuit output remains non-zero.

JACOBIAN BASED ALGORITHM

- Since \hat{P} is a product of sparse polynomials and rational functions, the set of substitutions as used for 2-PIT will ensure that \hat{P} remains non-zero under one of them.
- For this substitution, the Jacobian has full rank and therefore the circuit output remains non-zero.

3-PIT FOR DIAGONAL CIRCUITS

DIAGONAL CIRCUITS

Circuits where each multiplication gate is a powering gate.

THEOREM (FORBES-SHPILKA 2012, A-SAHA-SAXENA 2013)

There exists a $s^{O(\log s)}$ -time black-box algorithm for diagonal 3-PIT.

3-PIT FOR DIAGONAL CIRCUITS

DIAGONAL CIRCUITS

Circuits where each multiplication gate is a powering gate.

THEOREM (FORBES-SHPILKA 2012, A-SAHA-SAXENA 2013)

There exists a $s^{O(\log s)}$ -time black-box algorithm for diagonal 3-PIT.

RANK CONCENTRATION BASED ALGORITHM

- Let $P = \sum_{i=1}^k T_i$, $T_i = L_i^d$ be the given circuit with $L_i = \alpha_{i,0} + \sum_{\ell=1}^n \alpha_{i,\ell} x_\ell$.
- The polynomial can be rewritten as:

$$P = \bar{1} \cdot (\bar{u}_0 + \bar{u}_1 x_1 + \cdots + \bar{u}_n x_n)^d,$$

where $\bar{u}_\ell = [\alpha_{1,\ell} \cdots \alpha_{k,\ell}]$.

RANK CONCENTRATION BASED ALGORITHM

- Let $P = \sum_{i=1}^k T_i$, $T_i = L_i^d$ be the given circuit with $L_i = \alpha_{i,0} + \sum_{\ell=1}^n \alpha_{i,\ell} x_\ell$.
- The polynomial can be rewritten as:

$$P = \bar{1} \cdot (\bar{u}_0 + \bar{u}_1 x_1 + \cdots + \bar{u}_n x_n)^d,$$

where $\bar{u}_\ell = [\alpha_{1,\ell} \cdots \alpha_{k,\ell}]$.

RANK CONCENTRATION BASED ALGORITHM

- Now consider the following polynomial with vectors over F^k as coefficients:

$$\begin{aligned} Q &= (\bar{u}_0 + \bar{u}_1 x_1 + \cdots + \bar{u}_n x_n)^d \\ &= \sum_{S \in [0, d]^n} \bar{v}_S \bar{x}^S \end{aligned}$$

where $S = (d_1, d_2, \dots, d_n)$, \bar{v}_S is Hadamard product of d \bar{u} 's, and $\bar{x}^S = \prod_{i=1}^n x_i^{d_i}$.

- Consider the vectors $\bar{v}_S \in F^k$.
- Let the dimension of the space spanned by these vectors be $m \leq k$.

RANK CONCENTRATION BASED ALGORITHM

- Now consider the following polynomial with vectors over F^k as coefficients:

$$\begin{aligned} Q &= (\bar{u}_0 + \bar{u}_1 x_1 + \cdots + \bar{u}_n x_n)^d \\ &= \sum_{S \in [0, d]^n} \bar{v}_S \bar{x}^S \end{aligned}$$

where $S = (d_1, d_2, \dots, d_n)$, \bar{v}_S is Hadamard product of d \bar{u} 's, and $\bar{x}^S = \prod_{i=1}^n x_i^{d_i}$.

- Consider the vectors $\bar{v}_S \in F^k$.
- Let the dimension of the space spanned by these vectors be $m \leq k$.

RANK CONCENTRATION BASED ALGORITHM

- ℓ -rank concentration is the property that \bar{v}_S of support ℓ (i.e., S with only ℓ non-zero d_i 's) span this space.
- If there is ℓ -rank concentration, the PIT can be solved by setting all but ℓ x 's to zero and evaluating the resulting polynomial.

RANK CONCENTRATION BASED ALGORITHM

- ℓ -rank concentration is the property that \bar{v}_S of support ℓ (i.e., S with only ℓ non-zero d_i 's) span this space.
- If there is ℓ -rank concentration, the PIT can be solved by setting all but ℓ x 's to zero and evaluating the resulting polynomial.

RANK CONCENTRATION BASED ALGORITHM

- The space spanned by \bar{v}_S has $\log m$ -rank concentration:
 - ▶ Consider a monomial \bar{x}^S with support $> \log m$. It has $> m$ monomials strictly below it in lex-ordering.
 - ▶ There must be linear dependence between coefficients associated with these lower monomials.
 - ▶ Define a total ordering on monomials by fixing an arbitrary order between variables.
 - ▶ Take a linear dependence equation for lower monomial coefficients, identify the largest monomial in total order, and multiply the equation with coefficient of a monomial such that the largest monomial becomes \bar{x}^S .
 - ▶ This makes coefficient of \bar{x}^S linearly dependent on smaller monomial coefficients in total order.

RANK CONCENTRATION BASED ALGORITHM

- The space spanned by \bar{v}_S has $\log m$ -rank concentration:
 - ▶ Consider a monomial \bar{x}^S with support $> \log m$. It has $> m$ monomials strictly below it in lex-ordering.
 - ▶ There must be linear dependence between coefficients associated with these lower monomials.
 - ▶ Define a total ordering on monomials by fixing an arbitrary order between variables.
 - ▶ Take a linear dependence equation for lower monomial coefficients, identify the largest monomial in total order, and multiply the equation with coefficient of a monomial such that the largest monomial becomes \bar{x}^S .
 - ▶ This makes coefficient of \bar{x}^S linearly dependent on smaller monomial coefficients in total order.

RANK CONCENTRATION BASED ALGORITHM

- The space spanned by \bar{v}_S has $\log m$ -rank concentration:
 - ▶ Consider a monomial \bar{x}^S with support $> \log m$. It has $> m$ monomials strictly below it in lex-ordering.
 - ▶ There must be linear dependence between coefficients associated with these lower monomials.
 - ▶ Define a total ordering on monomials by fixing an arbitrary order between variables.
 - ▶ Take a linear dependence equation for lower monomial coefficients, identify the largest monomial in total order, and multiply the equation with coefficient of a monomial such that the largest monomial becomes \bar{x}^S .
 - ▶ This makes coefficient of \bar{x}^S linearly dependent on smaller monomial coefficients in total order.

RANK CONCENTRATION BASED ALGORITHM

- The space spanned by \bar{v}_S has $\log m$ -rank concentration:
 - ▶ Consider a monomial \bar{x}^S with support $> \log m$. It has $> m$ monomials strictly below it in lex-ordering.
 - ▶ There must be linear dependence between coefficients associated with these lower monomials.
 - ▶ Define a total ordering on monomials by fixing an arbitrary order between variables.
 - ▶ Take a linear dependence equation for lower monomial coefficients, identify the largest monomial in total order, and multiply the equation with coefficient of a monomial such that the largest monomial becomes \bar{x}^S .
 - ▶ This makes coefficient of \bar{x}^S linearly dependent on smaller monomial coefficients in total order.

RANK CONCENTRATION BASED ALGORITHM

- The space spanned by \bar{v}_S has $\log m$ -rank concentration:
 - ▶ Consider a monomial \bar{x}^S with support $> \log m$. It has $> m$ monomials strictly below it in lex-ordering.
 - ▶ There must be linear dependence between coefficients associated with these lower monomials.
 - ▶ Define a total ordering on monomials by fixing an arbitrary order between variables.
 - ▶ Take a linear dependence equation for lower monomial coefficients, identify the largest monomial in total order, and multiply the equation with coefficient of a monomial such that the largest monomial becomes \bar{x}^S .
 - ▶ This makes coefficient of \bar{x}^S linearly dependent on smaller monomial coefficients in total order.

RANK CONCENTRATION BASED ALGORITHM

- The algorithm is now simple: for all subsets of $\log m$ variables, set the remaining variables to zero, and test if the resulting polynomial is zero on $d^{\log m}$ distinct values.
- This gives a $d^{O(\log d)}$ -time black-box algorithm.
- In certain situations, there may not be rank concentration to begin with.
- So first apply a transformation on variables that yields rank concentration.
- For certain other restrictions of 3-PIT, the following transformation works:

$$x_i \mapsto x_i + t^{d_i}$$

for small d_i 's.

RANK CONCENTRATION BASED ALGORITHM

- The algorithm is now simple: for all subsets of $\log m$ variables, set the remaining variables to zero, and test if the resulting polynomial is zero on $d^{\log m}$ distinct values.
- This gives a $d^{O(\log d)}$ -time black-box algorithm.
- In certain situations, there may not be rank concentration to begin with.
- So first apply a transformation on variables that yields rank concentration.
- For certain other restrictions of 3-PIT, the following transformation works:

$$x_i \mapsto x_i + t^{d_i}$$

for small d_i 's.

RANK CONCENTRATION BASED ALGORITHM

- The algorithm is now simple: for all subsets of $\log m$ variables, set the remaining variables to zero, and test if the resulting polynomial is zero on $d^{\log m}$ distinct values.
- This gives a $d^{O(\log d)}$ -time black-box algorithm.
- In certain situations, there may not be rank concentration to begin with.
- So first apply a transformation on variables that yields rank concentration.
- For certain other restrictions of 3-PIT, the following transformation works:

$$x_i \mapsto x_i + t^{d_i}$$

for small d_i 's.

RANK CONCENTRATION BASED ALGORITHM

- The algorithm is now simple: for all subsets of $\log m$ variables, set the remaining variables to zero, and test if the resulting polynomial is zero on $d^{\log m}$ distinct values.
- This gives a $d^{O(\log d)}$ -time black-box algorithm.
- In certain situations, there may not be rank concentration to begin with.
- So first apply a transformation on variables that yields rank concentration.
- For certain other restrictions of 3-PIT, the following transformation works:

$$x_i \mapsto x_i + t^{d_i}$$

for small d_i 's.