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Computation without Bits

An algorithm, in general, can use individual bits of the input in very
complex ways. In particular, making execution decisions based on the
values of a bit.

Certain algorithms, however, use the individual bits in a much simpler
way.

Example: matrix multiplication. For [cij ] = [aij ] · [bij ], we have:

cij =
n−1∑
k=0

aikbkj .

If we assume operations + and ∗ as primitives, and the input being a
sequence of numbers denoting entries of matrices, then the algorithm
does not need to access bit values.
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Computation without Bits

We can formalize such computations as follows:
I Let R be a ring with operations + and ∗.
I Let the input be variables x1, x2, . . ., xn.
I An algorithm applies a sequence of ring operations on the input

variables and constants from R.
I The output is a polynomial in R[x1, x2, . . . , xn].

This is called arithmetic circuit model.
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Arithmetic Circuit Families

As in the boolean settings, arithmetic circuit model is a non-uniform
model of computation.

For each problem, one has, therefore, an infinite family of circuits
computing its solution.
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Power of the Model

The model proposed by [Valiant 1979].

It can compute all of the following operations:
I Matrix operations: addition, multiplication, determinant, inverse,

characteristic polynomial, permanent
I Polynomial operations: addition, multiplication
I Multivariate polynomial factorization when the polynomial is fixed
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Arithmetic Complexity

Crucial parameters associated with an arithmetic circuit are:

Input length: number of input variables. Notice that the size of
individual variables is not counted!

Size: equals the number of operations in the circuit (measured as a
function of input length).

Depth: equals the length of the longest path from a variable to
output of the circuit.

Degree: equals the formal degree of circuit defined inductively as: 1
for input variables, max for addition gates, and sum for multiplication
gates.

Fanin: equals the largest number of inputs to a gate in the circuit.
We allow arbitrary fanin.
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Extension with Zero-test

Many other algebraic operations cannot be computed in arithmetic
circuit model: solving system of linear equations, rank of a matrix,
gcd of polynomials, primality testing . . .

Generalize the model by including another operation: zero-test.
I This is a branching operation: check if the input is zero; if yes do A

else do B.

All the above operations can be computed in the new model.
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BSS Model

The generalized model can still not compute simple functions, e.g.,
”Is x < y?”

[Blum-Shub-Smale 1989] replaced zero-test with ≤ operator.
I The operator makes sense only in rings with a total ordering, e.g., Z,

Q, R.

They showed that the model, for R = Z or Q restores access to bits,
and is therefore equivalent to the standard boolean model.

For R = R, they developed a new theory of complexity.

We will not consider this model any further.
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The Class P

For both the models, the class P can be defined in an analogous way
to boolean settings: all problems that can be solved by a circuit
family of polynomial size.
In the arithmetic circuit model, a problem is simply a family of
polynomials, typically parameterized by the number of variables, or
degree, or both:

I Chebyshev polynomials

Td(x) =

bd/2c∑
k=0

(
d

2k

)
(x2 − 1)kxd−2k

by degree,
I Determinant polynomial by number of variables, and
I Elementary symmetric polynomials

Sd(x1, x2, . . . , xn) =
∑

I⊆[1,n],|I |=d

∏
j∈I

xj ,

by both degree and number of variables.
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Examples

In the arithmetic circuit model, the following problems are in P:
I Matrix operations: addition, multiplication, determinant, inverse,

characteristic polynomial
I Polynomial operations: addition, multiplication, elementary symmetric

polynomials
I Multivariate polynomial factorization when the polynomial is fixed
I In the arithmetic circuits with zero-test model, the following problems

are also in P: solving a system of linear equations, rank of a matrix,
gcd of polynomials, primality testing.
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A Poor Definition of NP

Analogous definition of NP to the boolean settings fails.

Consider arithmetic circuit model, where each computation results in
a polynomial, over R = C.

Say polynomial family Pn(x1, . . . , xn) is in NP if there exists another
polynomial family Qn+m+1(x1, . . . , xn, y1, . . . , ym, z) in P such that:

I m = nO(1), and
I Pn(α1, . . . , αn) = γ iff there exists β1, . . ., βm with

Qn+m+1(α1, . . . , αn, β1, . . . , βm, γ) = 0.
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A Poor Definition of NP

By definition, Qn+m+1(α1, . . . , αn, y1, . . . , ym, z) = 0 iff z = γ.

Therefore,

Qn+m+1(α1, . . . , αn, y1, . . . , ym, z) = δ · (z − γ)t ,

t > 0.

Since this is true for all α1, . . ., αn, we can reset Qn+m+1 to
Qn+m+1(α1, . . . , αn, 0, . . . , 0, z).
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A Better Definition of NP

The Class NP [Valiant 1979]

Polynomial family {Pn} is in NP if there exists a family {Pn+m} ∈ P such
that m = nO(1), and for every n:

Pn(x1, . . . , xn) =
∑

y1∈{0,1}

· · ·
∑

ym∈{0,1}

Qn+m(x1, . . . , xn, y1, . . . , ym).

1 Here 0 and 1 are identities of R.

2 The definition can be easily generalized to arithmetic circuit with
zero-test model.
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Examples

All problems in P,

Permanent family,

Jones polynomials: representing invariants of knots,

Tutte polynomials:

TG (x , y) =
∑
A⊆E

(x − 1)k(A)−k(E)(y − 1)k(A)+|A|−|V |

where G = (V ,E ) is an undirected graph and k(A) is the number of
connected components in the subgraph (V ,A).
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NP-complete Problems

Theorem [Valient 1979]

Computing permanent family is complete for NP in arithmetic circuit
model: for every polynomial family {Qn} in NP, for every n, Qn can be
expressed as permanent of a nO(1)-size matrix with variable and constant
entries.

Several other polynomial families are also NP-complete: Jones
polynomials, Tutte polynomials, matching polynomial etc.
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Is P 6= NP?

The classes P and NP of arithmetic circuit model roughly correspond
to computing the boolean classes #L and #P respectively:

I Permanent is complete for #P in boolean model and for NP in
arithmetic circuit model.

I Determinant is complete for #L in boolean model and for P under
quasi-polynomial size reductions in arithmetic circuit model.

Therefore, it is a weaker question that P 6= NP in boolean model: If
P 6= NP in boolean model then P 6= NP in arithmetic circuit model.
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Is P 6= NP?

Even for arithmetic circuit model, proving P 6= NP has been very
challenging, and has remained a hypothesis.

Henceforth, we restrict ourselves to the arithmetic model of
computation.

For arithmetic circuit model, the classes P and NP are called VP and
VNP: named after Valiant.

Over the years, this problem has become one of the most active areas
of research in complexity theory.
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Outline

1 Computation Over Rings
Arithmetic Circuit Model
Generalizing Arithmetic Circuits

2 Classes P and NP

3 Depth Reduction

4 Status of Lower Bounds

5 Polynomial Identity Testing

6 LPIT and Lower Bounds

7 Algorithms for 2-PIT and 3-PIT

Manindra Agrawal (IIT Kanpur) Algebraic Complexity SLAC 2015 25 / 73



../IITK-Logo.jpg

Reducing Depth to O(log d)

Theorem (Valiant-Skyum-Berkowitz-Rackoff, 1983)

If polynomial P(x1, . . . , xn) of degree d is computable by an arithmetic
circuit of size s ≥ n, then it can also be computed by an arithmetic circuit
of size sO(1) whose depth is O(log d) and fanin of multiplication gates is
two.

Another construction was given by [Allender-Jiao-Mahajan-Vinay 1994].
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Reducing Depth to 4

Theorem (A-Vinay 2008)

If polynomial P(x1, . . . , xn) of degree d is computable by an arithmetic
circuit of size s = 2o(d+d log n

d
), then it can also be computed by an

arithmetic circuit of size sO(1) of depth 4.

Extended by [Koiran 2012, Tavenas 2013].
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Proof

Let the polynomial P(x1, . . . , xn) be computed by an arithmetic circuit C
of size t = 2o(d+d log n

d
).

[Allender-Jiao-Mahajan-Vinay 1994] shows that C can be transformed
to a circuit D of degree d , size tO(1) and depth O(log d) with
multiplication gates of fanin two.

We modify this transformation slightly to obtain a circuit D of degree
d , size tO(1) and depth ≤ 2 log d with multiplication gates of fanin
≤ 6.

Further, the circuit D consists of alternating layers of addition and
multiplication gates.

We now describe the construction of the circuit D.
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Construction of D: Setup

Make the circuit C layered with alternating layers of addition and
multiplication gates.

Make fanin of every multiplication gate two.

Rearrange children of multiplication gates so that degree of the right
child is greater than or equal to the degree of the left child.
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Construction of D: Proof Trees

A proof tree rooted at gate g of circuit C is a subcircuit of C obtained as
follows:

Start with the subcircuit of C that has gate g at the top and
computes the polynomial at gate g .

For every +-gate in the subcircuit, retain only one input to the gate
deleting the remaining input lines.

For every ∗-gate in the subcircuit, retain both the inputs to the gate.

A proof tree rooted at gate g computes a monomial and the polynomial at
g is the sum over monomials computed by all proof tress rooted at g .
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Construction of D: Defining Intermediate
Polynomials

For every input variable xi , let [xi ] stand for the polynomial xi .

For every gate g of C , let [g ] stand for polynomial computed at gate
g .

For every pair of gates g and h of C , let [g , h] be the polynomial:

[g , h] =
∑
T

m(T , h)

where T runs over all proof trees rooted at g and m(T , h) is the
monomial computed by proof tree T when gate h is replaced by 1 if
gate h occurs in the rightmopst path of T , m(T , h) is 0 otherwise.

It follows that

[g ] =
n∑

i=1

[g , xi ][xi ].
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Construction of D: Defining gates [g , h]

If g is a +-gate with children g1, . . ., gt , then

[g , h] =
t∑

i=1

[gi , h].

Let g be a ∗-gate with children gL (left child) and gR (right child).

A rightmost path from g to h is a path from g to h in the circuit
obtained from C by deleting input line from left child of every ∗-gate.

If there are only +-gates on every rightmost path from g to h then

[g , h] = [gL].
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Construction of D: Defining [g , h]

Otherwise, there exists a ∗-gate p with children pL and pR in a
rightmost path from g to h such that
deg(p) ≥ 1

2 (deg(g) + deg(h)) > deg(pR).

Then, we have:

[g , h] =
∑
p

[g , p] · [pL] · [pR , h]

where the sum ranges over all gates p satisfying the above condition.

deg(g) stands for degree of gate g
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Construction of D: Defining [g , h]

+ [g , h]

∗ ∗
p’s

+ [g , p] + [pL] + [pR , h]

∗ ∗
+ [pL, xi ] xi

xi ’s

+ + [pjL, xi ]
j ’s

∗ ∗q’s

+ [pjL, q] + [qL] + [qR , xi ]

[g , h] =
∑

p[g , p][pL][pR , h].

deg([g , h]) = deg(g)− deg(h)

deg([pL]) ≤ deg(g)− deg(h)

[pL] =
∑

i [pL, xi ][xi ],

pL =
∑

j pj
L.

[pj
L, xi ] =

∑
q[pj

L, q][qL][qR , xi ].

deg([pj
L, q] ≤ 1

2 deg(pL)

deg([qL] ≤ 1
2 deg(pL)

deg([qR , xi ] ≤ 1
2 deg(pL)
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+ [g , h]

∗ ∗
p’s, xi ’s, j ’s, q’s

+
[g , p]

+

[pjL, q]

+
[qL]

+
[qR , xi ]

+
[xi ]

+
[pR , h]

Flatten the subcircuit to write
[g , h] as:

[g , h] =
∑
p

∑
i

∑
j

∑
q

[g , p][pL,j , q][qL][qR , xi ][xi ][pR , h]

with degree of each of the six
polynomials in the product
bounded by 1

2 deg([g , h]).

Manindra Agrawal (IIT Kanpur) Algebraic Complexity SLAC 2015 35 / 73



../IITK-Logo.jpg

Construction of D

By adding dummy +-gates and merging adjacent +-gates, it can be
ensured that the circuit has alternating layers of +- and ∗-gates.

The size of resulting circuit is tO(1).

Since the degree of children of a ∗-gate is at most half of the degree
of the gate, the depth of the circuit D is ≤ 2 log d .
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Replacing D

We now replace D by a depth four circuit.

The circuit is defined by cutting D in two halves and replacing each
half by a depth two circuit.
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Cutting D

Let ` be any function such that ` ≤ d+d log d
n

log t and ` = ω(1).

Let u = 1
2 log6 `.

Cut D into two halves with top half consisting of u layers of ∗-gates
with the bottom layer being of ∗-gates.

Let g1, g2, . . ., gk be the output gates of the bottom layer.

Let the polynomial computed by gate gi be Pi (x1, x2, . . . , xn).

The top layer can be viewed as computing a polynomial in k new
variables; let this be P0(y1, y2, . . . , yk).

Then:

P(x1, . . . , xn) = P0(P1(x1, . . . , xn),P2(x1, . . . , xn), . . . ,Pk(x1, . . . , xn)).
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The Circuit E

A direct counting shows that each Pj , 0 ≤ j ≤ k , can be replaced by
a depth two circuit of size 2o(d+d log n

d
).

Since k = 2o(d+d log n
d

), the resulting depth four circuit, E , is of size
2o(d+d log n

d
).

The fanin of second layer of ∗-gates in E is at most 6u =
√
` which is

any small function in ω(1).

The fanin of bottom layer of ∗-gates in E is at most d
2u = o(d).

Manindra Agrawal (IIT Kanpur) Algebraic Complexity SLAC 2015 39 / 73



../IITK-Logo.jpg

The Circuit E

A direct counting shows that each Pj , 0 ≤ j ≤ k , can be replaced by
a depth two circuit of size 2o(d+d log n

d
).

Since k = 2o(d+d log n
d

), the resulting depth four circuit, E , is of size
2o(d+d log n

d
).

The fanin of second layer of ∗-gates in E is at most 6u =
√
` which is

any small function in ω(1).

The fanin of bottom layer of ∗-gates in E is at most d
2u = o(d).

Manindra Agrawal (IIT Kanpur) Algebraic Complexity SLAC 2015 39 / 73



../IITK-Logo.jpg

The Circuit E

A direct counting shows that each Pj , 0 ≤ j ≤ k , can be replaced by
a depth two circuit of size 2o(d+d log n

d
).

Since k = 2o(d+d log n
d

), the resulting depth four circuit, E , is of size
2o(d+d log n

d
).

The fanin of second layer of ∗-gates in E is at most 6u =
√
` which is

any small function in ω(1).

The fanin of bottom layer of ∗-gates in E is at most d
2u = o(d).

Manindra Agrawal (IIT Kanpur) Algebraic Complexity SLAC 2015 39 / 73



../IITK-Logo.jpg

Reducing Depth to 3

Theorem (Gupta-Kamath-Kayal-Saptharishi 2013)

If polynomial P(x1, . . . , xn) of degree d is computable by an arithmetic
circuit of size s = 2o(d+d log n

d
), then it can also be computed by an

arithmetic circuit of size sO(1) of depth 3 if the underlying field has
characteristic zero or large (= Ω(log s)).
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Proof Outline

Replace each
∏

layer of a depth four circuit by
∑
∧
∑

layers
resulting in a

∑
∧
∑
∧
∑

circuit using [Fischer 1994]:

n∏
j=1

xj =
1

2n−1n!

∑
r2,...,rn∈{−1,1}

(−1)wt(r)(x1 +
n∑

j=2

rjxj)
n,

where wt(r) = |{j | rj = −1}|. This works for char = 0 or > n.

Replace ∧
∑
∧ by

∑∏∑
resulting in

∑∏∑
circuit using [Saxena

2008]:

(α1xβ1
1 +α2xβ2

2 +· · ·+αnxβnn )d = degree d coefficient of d!·
n∏

j=1

eαjx
βj
j z .

This works for char = 0 or > d .
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Outline

1 Computation Over Rings
Arithmetic Circuit Model
Generalizing Arithmetic Circuits

2 Classes P and NP

3 Depth Reduction

4 Status of Lower Bounds

5 Polynomial Identity Testing

6 LPIT and Lower Bounds

7 Algorithms for 2-PIT and 3-PIT

Manindra Agrawal (IIT Kanpur) Algebraic Complexity SLAC 2015 42 / 73



../IITK-Logo.jpg

Lower Bounds on Permanent and Determinant

[Jerrum-Snir 1982] Any monotone circuit family computing permanent
is of exponential size.

Monotone circuits are circuits with no negative constant.

[Shpilka-Wigderson 1999] Any depth three circuit family computing
permanent (or even determinant) over Q is of size Ω(n2).

[Grigoriev-Razborov 2000] Any depth three circuit family
computing permanent or determinant over a finite field is of
exponential size.
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Lower Bounds on Permanent and Determinant

[Raz 2004] Any multilinear formula family computing permanent or
determinant is of size nΩ(log n).

Formulas are circuits with outdegree one.
Multilinear formulas are formulas in which every gate
computes a multilinear polynomial.

[Kayal-Saha 2014] Any depth three circuit family of bottom fanin ≤ r
computing a polynomial family in VP of degree d in n

variables over fields of charecteristic zero, is of size nΩ( d
r

).

[Kayal-Limaye-Saha-Srinivasan 2014] 2Ω(
√
n log n) lower bound on

homogeneous depth four circuits computing permanent over
characteristic zero.

A circuit is homogeneous if every internediate polynomial is homogeneous.
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Definitions

PIT

Given an arithmetic circuit of size s over ring R, test if the polynomial
computed by the circuit is non-zero.

Low Degree PIT (LPIT)

Given an arithmetic circuit of size s over ring R computing a polynomial of
degree ≤ s, test if the polynomial computed by the circuit is non-zero.
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An Example

+

∗

+

∗ ∗

∗

+

∗

u

∗

v

+

∗

x

∗

y

∗

+

∗ ∗

−1

2 2

2 2 2 2

−1

Is (ux + vy)2 + (vx − uy)2 − (u2 + v 2) · (x2 + y 2) 6= 0? [NO!]
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Applications

Bipartite Matching : for graph G = (U,V ,E ), check if

det

e1,1x1,1 · · · e1,nx1,n
...

. . .
...

en,1xn,1 · · · en,nxn,n

 6= 0

over any field, where E = [ei ,j ]. An example of LPIT.

Primality Testing : for number n, check if

(x + y)n = xn + yn

over ring Zn[x , y ]/(x r − 1, y s − 1) for suitable r and s, both
logO(1) n.
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Complexity of PIT

A number of randomized polynomial time algorithms are known for the
problem.

The simplest one is by [Schwartz, Zippel 1979]: Substitute random
values from a small subset of R (using a small extension of R if
required) for each variable, evaluate the circuit, and output
NON-ZERO iff the result is a non-zero number.

Others are [Chen-Kao 1997], [Lewis-Vadhan 1998], [A-Biswas 1999],
. . ..
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Deterministic Algorithm for PIT

Open Question

Is there a deterministic polynomial time algorithm for PIT?

Long-standing open problem.

A positive answer also yields a lower bound.
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Two Types of Deterministic Algorithms for
PIT

White Box

A white-box time t(n) algorithm for PIT is a deterministic algorithm
solving the problem in time at most t(n).

Black Box

A black-box time t(n) algorithm for PIT is a deterministic algorithm
running in time t(n) that, given an arithmetic circuit, determines if it
computes non-zero polynomial with access only to input-output lines and
size of the circuit.
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LPIT and Lower Bounds I

Theorem (Kabanets-Impagliazzo 2003)

If there exists a white-box polynomial-time algorithm for LPIT then NEXP
requires superpolynomial size arithmetic circuits.
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LPIT and Lower Bounds I

Proof.

Assume NEXP has polynomial-size arithmetic circuits and PIT has a
polynomial-time algorithm.

Construct an NP machine to compute permanent that guesses the
circuit for the permanent and verifies it recursively using PIT:

I If C (x1,1, . . . , x1,n, . . . , xn,1, . . . , xn,n) is circuit for permanent of n × n
matrices, then we can extract from it circuit Cj for permanent of j × j
matrices for j < n.

I Using LPIT, verify the correctness of C :

Cj(x̄) = x1,1Cj−1(x̄1) + · · ·+ x1,jCj−1(x̄j)

where x̄i drops first row and ith column.

This implies #P is in NP. Since NEXP = #P by assumption, we get
NEXP = NP contradicting time hierarchy theorem.
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LPIT and Lower Bounds II

Theorem (Heintz-Schnorr 1980, A 2005)

If there exist a black-box polynomial-time algorithm for LPIT then E
requires exponential size arithmetic circuits.
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LPIT and Lower Bounds II
Proof.

Let A be a black-box polynomial-time algorithm for LPIT.

For a circuit of size s on n variables, A will evaluate it on a sequence
of inputs and accept iff any of the outputs in non-zero.

Let these inputs be (α1,1, . . . , α1,n), . . . , (αt,1, . . . , αt,n) with
t = sO(1).

Let m = dlog(t + 1)e = O(log s).

Define polynomial rm as:

rm(x1, x2, . . . , xm) =
∑

S⊆[1,m]

cS
∏
i∈S

xi .

Coefficients cS ∈ F satisfy:∑
S⊆[1,m]

cS
∏
i∈S

αj ,i = 0

for every 1 ≤ j ≤ t.
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LPIT and Lower Bounds II

A non-zero rm always exists since it has ≥ t + 1 coefficients that
satisfy t homogeneous linear equations.

Polynomial rm can be computed by exponential size arithmetic
circuits.

Circuit complexity of rm is more than s = 2Ω(m).
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Fixed Depth PIT

Depth d PIT

d-PIT is the problem to decide if a given arithmetic circuit of depth d
(alternating sums and products with top gate being sum) computes a
non-zero polynomial.

d-PIT is a restriction of LPIT.
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3-PIT and Lower Bounds

Theorem (Gupta-Kamath-Kayal-Saptharishi 2013)

If there exist a polynomial-time black-box algorithm for 3-PIT then E
requires exponential size arithmetic circuits if the underlying field has
characteristic zero or large (= Ω(log s)).

Theorem

If there exists a white-box polynomial-time algorithm for 3-PIT then
NEXP requires superpolynomial size arithmetic circuits.

Manindra Agrawal (IIT Kanpur) Algebraic Complexity SLAC 2015 59 / 73



../IITK-Logo.jpg

3-PIT and Lower Bounds

Theorem (Gupta-Kamath-Kayal-Saptharishi 2013)

If there exist a polynomial-time black-box algorithm for 3-PIT then E
requires exponential size arithmetic circuits if the underlying field has
characteristic zero or large (= Ω(log s)).

Theorem

If there exists a white-box polynomial-time algorithm for 3-PIT then
NEXP requires superpolynomial size arithmetic circuits.

Manindra Agrawal (IIT Kanpur) Algebraic Complexity SLAC 2015 59 / 73



../IITK-Logo.jpg

Outline

1 Computation Over Rings
Arithmetic Circuit Model
Generalizing Arithmetic Circuits

2 Classes P and NP

3 Depth Reduction

4 Status of Lower Bounds

5 Polynomial Identity Testing

6 LPIT and Lower Bounds

7 Algorithms for 2-PIT and 3-PIT

Manindra Agrawal (IIT Kanpur) Algebraic Complexity SLAC 2015 60 / 73



../IITK-Logo.jpg

2-PIT

Theorem (Folklore)

There exists a polynomial-time black-box algorithm for 2-PIT.
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2-PIT

Proof.

A
∑∏

circuit computes a sparse polynomial.

Let C be the given
∑∏

circuit of size s computing a polynomial of
degree ≤ d .

One of the substitutions
(x1, . . . , xi , . . . , xn) = (y , . . . , y (d+1)i−1 (mod r), . . . , y (d+1)n−1 (mod r)),
1 < r < s2, will ensure that all terms of the polynomial remain
distinct.
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3-PIT with Bounded Top Fanin

Sequence of solutions for 3-PIT with top sum gate of fanin k :

[Dvir-Shpilka 2005] White-box 2(log s)k
2

time algorithm.

[Kayal-Saxena 2006] White-box sO(k) time algorithm.

[Karnin-Shpilka 2008] Black-box sO(logk s) time algorithm.

[Saxena-Seshadri 2009] Black-box sk
3 log s time algorithm.

[Kayal-Saraf 2009] Black-box sk
k

time algorithm over characteristic
zero fields.

[Saxena-Seshadri 2011] Black-box sO(k) time algorithm.

[A-Saha-Saptharishi-Saxena 2012] Black-box sO(k) time algorithm
for zero or large characteristic fields.

Manindra Agrawal (IIT Kanpur) Algebraic Complexity SLAC 2015 63 / 73



../IITK-Logo.jpg

3-PIT with Bounded Top Fanin

Sequence of solutions for 3-PIT with top sum gate of fanin k :

[Dvir-Shpilka 2005] White-box 2(log s)k
2

time algorithm.

[Kayal-Saxena 2006] White-box sO(k) time algorithm.

[Karnin-Shpilka 2008] Black-box sO(logk s) time algorithm.

[Saxena-Seshadri 2009] Black-box sk
3 log s time algorithm.

[Kayal-Saraf 2009] Black-box sk
k

time algorithm over characteristic
zero fields.

[Saxena-Seshadri 2011] Black-box sO(k) time algorithm.

[A-Saha-Saptharishi-Saxena 2012] Black-box sO(k) time algorithm
for zero or large characteristic fields.

Manindra Agrawal (IIT Kanpur) Algebraic Complexity SLAC 2015 63 / 73



../IITK-Logo.jpg

3-PIT with Bounded Top Fanin

Sequence of solutions for 3-PIT with top sum gate of fanin k :

[Dvir-Shpilka 2005] White-box 2(log s)k
2

time algorithm.

[Kayal-Saxena 2006] White-box sO(k) time algorithm.

[Karnin-Shpilka 2008] Black-box sO(logk s) time algorithm.

[Saxena-Seshadri 2009] Black-box sk
3 log s time algorithm.

[Kayal-Saraf 2009] Black-box sk
k

time algorithm over characteristic
zero fields.

[Saxena-Seshadri 2011] Black-box sO(k) time algorithm.

[A-Saha-Saptharishi-Saxena 2012] Black-box sO(k) time algorithm
for zero or large characteristic fields.

Manindra Agrawal (IIT Kanpur) Algebraic Complexity SLAC 2015 63 / 73



../IITK-Logo.jpg

3-PIT with Bounded Top Fanin

Sequence of solutions for 3-PIT with top sum gate of fanin k :

[Dvir-Shpilka 2005] White-box 2(log s)k
2

time algorithm.

[Kayal-Saxena 2006] White-box sO(k) time algorithm.

[Karnin-Shpilka 2008] Black-box sO(logk s) time algorithm.

[Saxena-Seshadri 2009] Black-box sk
3 log s time algorithm.

[Kayal-Saraf 2009] Black-box sk
k

time algorithm over characteristic
zero fields.

[Saxena-Seshadri 2011] Black-box sO(k) time algorithm.

[A-Saha-Saptharishi-Saxena 2012] Black-box sO(k) time algorithm
for zero or large characteristic fields.

Manindra Agrawal (IIT Kanpur) Algebraic Complexity SLAC 2015 63 / 73



../IITK-Logo.jpg

3-PIT with Bounded Top Fanin

Sequence of solutions for 3-PIT with top sum gate of fanin k :

[Dvir-Shpilka 2005] White-box 2(log s)k
2

time algorithm.

[Kayal-Saxena 2006] White-box sO(k) time algorithm.

[Karnin-Shpilka 2008] Black-box sO(logk s) time algorithm.

[Saxena-Seshadri 2009] Black-box sk
3 log s time algorithm.

[Kayal-Saraf 2009] Black-box sk
k

time algorithm over characteristic
zero fields.

[Saxena-Seshadri 2011] Black-box sO(k) time algorithm.

[A-Saha-Saptharishi-Saxena 2012] Black-box sO(k) time algorithm
for zero or large characteristic fields.

Manindra Agrawal (IIT Kanpur) Algebraic Complexity SLAC 2015 63 / 73



../IITK-Logo.jpg

3-PIT with Bounded Top Fanin

Sequence of solutions for 3-PIT with top sum gate of fanin k :

[Dvir-Shpilka 2005] White-box 2(log s)k
2

time algorithm.

[Kayal-Saxena 2006] White-box sO(k) time algorithm.

[Karnin-Shpilka 2008] Black-box sO(logk s) time algorithm.

[Saxena-Seshadri 2009] Black-box sk
3 log s time algorithm.

[Kayal-Saraf 2009] Black-box sk
k

time algorithm over characteristic
zero fields.

[Saxena-Seshadri 2011] Black-box sO(k) time algorithm.

[A-Saha-Saptharishi-Saxena 2012] Black-box sO(k) time algorithm
for zero or large characteristic fields.

Manindra Agrawal (IIT Kanpur) Algebraic Complexity SLAC 2015 63 / 73



../IITK-Logo.jpg

3-PIT with Bounded Top Fanin

Sequence of solutions for 3-PIT with top sum gate of fanin k :

[Dvir-Shpilka 2005] White-box 2(log s)k
2

time algorithm.

[Kayal-Saxena 2006] White-box sO(k) time algorithm.

[Karnin-Shpilka 2008] Black-box sO(logk s) time algorithm.

[Saxena-Seshadri 2009] Black-box sk
3 log s time algorithm.

[Kayal-Saraf 2009] Black-box sk
k

time algorithm over characteristic
zero fields.

[Saxena-Seshadri 2011] Black-box sO(k) time algorithm.

[A-Saha-Saptharishi-Saxena 2012] Black-box sO(k) time algorithm
for zero or large characteristic fields.

Manindra Agrawal (IIT Kanpur) Algebraic Complexity SLAC 2015 63 / 73



../IITK-Logo.jpg

Jacobian Based Algorithm

Let P =
∑k

i=1 Ti , Ti =
∏s

j=1 Li ,j be the given circuit with
Li ,j = αi ,j ,0 +

∑n
`=1 αi ,j ,`x`.

Assume that P 6= 0 and Ti ’s are algebraically independent:
I There is no polynomial Q(y1, y2, . . . , yk) such that

Q(T1,T2, . . . ,Tk) = 0.

For characteristic zero or > sk : T1, . . ., Tk are algebraically
independent iff J(T1,T2, . . . ,Tk) has full rank, where

J(y1, y2, . . . , yk) =


∂y1
∂x1

∂y1
∂x2

· · · ∂y1
∂xn

...
...

. . .
...

∂yk
∂x1

∂yk
∂x1

· · · ∂yk
∂xn

 .
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Therefore, J(T1, . . . ,Tk) has rank k .

We have:

J(T1,T2, . . . ,Tk) =


∂T1
∂x1

∂T1
∂x2

· · · ∂T1
∂xn

...
...

. . .
...

∂Tk
∂x1

∂Tk
∂x1

· · · ∂Tk
∂xn



=


T1
∑d

j=1
α1,j,1

L1,j
· · · T1

∑d
j=1

α1,j,n

L1,j

...
. . .

...

Tk
∑d

j=1
αk,j,1

Lk,j
· · · Tk

∑d
j=1

αk,j,n

Lk,j
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Jacobian Based Algorithm

Assume, wlog, that columns corresponding to variables x1, x2, . . ., xk
have rank k .

Let

P̂ =

∣∣∣∣∣∣∣∣
T1
∑d

j=1
α1,j,1

L1,j
· · · T1

∑d
j=1

α1,j,k

L1,j

...
. . .

...

Tk
∑d

j=1
αk,j,1

Lk,j
· · · Tk

∑d
j=1

αk,j,k

Lk,j

∣∣∣∣∣∣∣∣
=

k∏
i=1

Ti ·

∣∣∣∣∣∣∣∣
∑d

j=1
α1,j,1

L1,j
· · ·

∑d
j=1

α1,j,k

L1,j

...
. . .

...∑d
j=1

αk,j,1

Lk,j
· · ·

∑d
j=1

αk,j,k

Lk,j

∣∣∣∣∣∣∣∣
=

k∏
i=1

Ti · R,

where R is a sparse rational function.
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Jacobian Based Algorithm

Since P̂ is a product of sparse polynomials and rational functions, the
set of substitutions as used for 2-PIT will ensure that P̂ remains
non-zero under one of them.

For this substitution, the Jacobian has full rank and therefore the
circuit output remains non-zero.
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3-PIT for Diagonal Circuits

Diagonal Circuits

Circuits where each multiplication gate is a powering gate.

Theorem (Forbes-Shpilka 2012, A-Saha-Saxena 2013)

There exists a sO(log s)-time black-box algorithm for diagonal 3-PIT.
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Rank Concentration Based Algorithm

Let P =
∑k

i=1 Ti , Ti = Ld
i be the given circuit with

Li = αi ,0 +
∑n

`=1 αi ,`x`.

The polynomial can be rewritten as:

P = 1̄ · (ū0 + ū1x1 + · · ·+ ūnxn)d ,

where ū` = [α1,` · · ·αk,`].
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Rank Concentration Based Algorithm

Now consider the following polynomial with vectors over F k as
coefficients:

Q = (ū0 + ū1x1 + · · ·+ ūnxn)d

=
∑

S∈[0,d ]n

v̄S x̄S

where S = (d1, d2, . . . , dn), v̄S is Hadamard product of d ū’s, and
x̄S =

∏n
i=1 xdi

i .

Consider the vectors v̄S ∈ F k .

Let the dimension of the space spanned by these vectors be m ≤ k.
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Rank Concentration Based Algorithm

`-rank concentration is the property that v̄S of support ` (i.e., S with
only ` non-zero di ’s) span this space.

If there is `-rank concentration, the PIT can be solved by setting all
but ` x ’s to zero and evaluating the resulting polynomial.
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Rank Concentration Based Algorithm

The space spanned by v̄S has log m-rank concentration:
I Consider a monomial x̄S with support > log m. It has > m monomials

strictly below it in lex-ordering.
I There must be linear dependence between coefficients associated with

these lower monomials.
I Define a total ordering on monomials by fixing an arbitrary order

between variables.
I Take a linear dependence equation for lower monomial coefficients,

identify the largest monomial in total order, and multiply the equation
with coefficient of a monomial such that the largest monomial becomes
x̄S .

I This makes coefficient of x̄S linearly dependent on smaller monomial
coefficients in total order.
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Rank Concentration Based Algorithm

The algorithm is now simple: for all subsets of log m variables, set the
remaining variables to zero, and test if the resulting polynomial is
zero on d log m distinct values.

This gives a dO(log d)-time black-box algorithm.

In certain situations, there may not be rank concentration to begin
with.

So first apply a transformation on variables that yields rank
concentration.

For certain other restrictions of 3-PIT, the following transformation
works:

xi 7→ xi + tdi

for small di ’s.
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