Algebraic Complexity Theory

Manindra Agrawal

IIT Kanpur

Symposium on Learning, Algorithms and Complexity, IISc Bangalore 2015
Overview

1. Computation Over Rings
 - Arithmetic Circuit Model
 - Generalizing Arithmetic Circuits

2. Classes P and NP

3. Depth Reduction

4. Status of Lower Bounds

5. Polynomial Identity Testing

6. LPIT and Lower Bounds

7. Algorithms for 2-PIT and 3-PIT
Outline

1. Computation Over Rings
 - Arithmetic Circuit Model
 - Generalizing Arithmetic Circuits

2. Classes P and NP

3. Depth Reduction

4. Status of Lower Bounds

5. Polynomial Identity Testing

6. LPIT and Lower Bounds

7. Algorithms for 2-PIT and 3-PIT
Computation without Bits

- An algorithm, in general, can use individual bits of the input in very complex ways. In particular, making execution decisions based on the values of a bit.

- Certain algorithms, however, use the individual bits in a much simpler way.

- Example: matrix multiplication. For \(c_{ij} = a_{ij} \cdot b_{ij} \), we have:

\[
c_{ij} = \sum_{k=0}^{n-1} a_{ik} b_{kj}.
\]

- If we assume operations + and \(\ast \) as primitives, and the input being a sequence of numbers denoting entries of matrices, then the algorithm does not need to access bit values.
Computation without Bits

- An algorithm, in general, can use individual bits of the input in very complex ways. In particular, making execution decisions based on the values of a bit.
- Certain algorithms, however, use the individual bits in a much simpler way.
- Example: matrix multiplication. For \(c_{ij} = [a_{ij}] \cdot [b_{ij}] \), we have:

\[
c_{ij} = \sum_{k=0}^{n-1} a_{ik} b_{kj}.
\]

- If we assume operations + and \(\cdot \) as primitives, and the input being a sequence of numbers denoting entries of matrices, then the algorithm does not need to access bit values.
Computation without Bits

- An algorithm, in general, can use individual bits of the input in very complex ways. In particular, making execution decisions based on the values of a bit.

- Certain algorithms, however, use the individual bits in a much simpler way.

- Example: matrix multiplication. For $c_{ij} = [a_{ij}] \cdot [b_{ij}]$, we have:

 $$c_{ij} = \sum_{k=0}^{n-1} a_{ik} b_{kj}.$$

- If we assume operations $+$ and \cdot as primitives, and the input being a sequence of numbers denoting entries of matrices, then the algorithm does not need to access bit values.
Outline

1. Computation Over Rings
 - Arithmetic Circuit Model
 - Generalizing Arithmetic Circuits

2. Classes P and NP

3. Depth Reduction

4. Status of Lower Bounds

5. Polynomial Identity Testing

6. LPIT and Lower Bounds

7. Algorithms for 2-PIT and 3-PIT
We can formalize such computations as follows:

- Let R be a ring with operations $+$ and \ast.
- Let the input be variables x_1, x_2, \ldots, x_n.
- An algorithm applies a sequence of ring operations on the input variables and constants from R.
- The output is a polynomial in $R[x_1, x_2, \ldots, x_n]$.

This is called arithmetic circuit model.
Computation without Bits

- We can formalize such computations as follows:
 - Let R be a ring with operations $+$ and \ast.
 - Let the input be variables x_1, x_2, \ldots, x_n.
 - An algorithm applies a sequence of ring operations on the input variables and constants from R.
 - The output is a polynomial in $R[x_1, x_2, \ldots, x_n]$.
- This is called arithmetic circuit model.
We can formalize such computations as follows:

- Let R be a ring with operations $+$ and \ast.
- Let the input be variables x_1, x_2, \ldots, x_n.
- An algorithm applies a sequence of ring operations on the input variables and constants from R.
- The output is a polynomial in $R[x_1, x_2, \ldots, x_n]$.

This is called arithmetic circuit model.
Computation without Bits

- We can formalize such computations as follows:
 - Let R be a ring with operations $+$ and \ast.
 - Let the input be variables x_1, x_2, \ldots, x_n.
 - An algorithm applies a sequence of ring operations on the input variables and constants from R.
 - The output is a polynomial in $R[x_1, x_2, \ldots, x_n]$.

- This is called **arithmetic circuit model**.
An Example

Output:

$$\text{output} = (ux + vy)^2 + (vx - uy)^2 - (u^2 + v^2) \cdot (x^2 + y^2)$$
As in the boolean settings, arithmetic circuit model is a non-uniform model of computation.

For each problem, one has, therefore, an infinite family of circuits computing its solution.
Arithmetic Circuit Families

- As in the boolean settings, arithmetic circuit model is a non-uniform model of computation.
- For each problem, one has, therefore, an infinite family of circuits computing its solution.
Power of the Model

- The model proposed by [Valiant 1979].
- It can compute all of the following operations:
 - Matrix operations: addition, multiplication, determinant, inverse, characteristic polynomial, permanent
 - Polynomial operations: addition, multiplication
 - Multivariate polynomial factorization when the polynomial is fixed
Power of the Model

The model proposed by [Valiant 1979].

It can compute all of the following operations:

- Matrix operations: addition, multiplication, determinant, inverse, characteristic polynomial, permanent
- Polynomial operations: addition, multiplication
- Multivariate polynomial factorization when the polynomial is fixed
Power of the Model

- The model proposed by [Valiant 1979].
- It can compute all of the following operations:
 - Matrix operations: addition, multiplication, determinant, inverse, characteristic polynomial, permanent
 - Polynomial operations: addition, multiplication
 - Multivariate polynomial factorization when the polynomial is fixed
Power of the Model

- The model proposed by [Valiant 1979].
- It can compute all of the following operations:
 - Matrix operations: addition, multiplication, determinant, inverse, characteristic polynomial, permanent
 - Polynomial operations: addition, multiplication
 - Multivariate polynomial factorization when the polynomial is fixed
Power of the Model

- The model proposed by [Valiant 1979].
- It can compute all of the following operations:
 - Matrix operations: addition, multiplication, determinant, inverse, characteristic polynomial, permanent
 - Polynomial operations: addition, multiplication
 - Multivariate polynomial factorization when the polynomial is fixed
Crucial parameters associated with an arithmetic circuit are:

- **Input length**: number of input variables. Notice that the size of individual variables is not counted!
- **Size**: equals the number of operations in the circuit (measured as a function of input length).
- **Depth**: equals the length of the longest path from a variable to output of the circuit.
- **Degree**: equals the formal degree of circuit defined inductively as: 1 for input variables, max for addition gates, and sum for multiplication gates.
- **Fanin**: equals the largest number of inputs to a gate in the circuit. We allow arbitrary fanin.
Arithmetic Complexity

Crucial parameters associated with an arithmetic circuit are:

- **Input length**: number of input variables. Notice that the size of individual variables is not counted!
- **Size**: equals the number of operations in the circuit (measured as a function of input length).
- **Depth**: equals the length of the longest path from a variable to output of the circuit.
- **Degree**: equals the formal degree of circuit defined inductively as: 1 for input variables, max for addition gates, and sum for multiplication gates.
- **Fanin**: equals the largest number of inputs to a gate in the circuit. We allow arbitrary fanin.
Arithmetic Complexity

Crucial parameters associated with an arithmetic circuit are:

- **Input length**: number of input variables. Notice that the size of individual variables is not counted!
- **Size**: equals the number of operations in the circuit (measured as a function of input length).
- **Depth**: equals the length of the longest path from a variable to output of the circuit.
- **Degree**: equals the formal degree of circuit defined inductively as: 1 for input variables, max for addition gates, and sum for multiplication gates.
- **Fanin**: equals the largest number of inputs to a gate in the circuit. We allow arbitrary fanin.
Arithmetic Complexity

Crucial parameters associated with an arithmetic circuit are:

- **Input length**: number of input variables. Notice that the size of individual variables is not counted!
- **Size**: equals the number of operations in the circuit (measured as a function of input length).
- **Depth**: equals the length of the longest path from a variable to output of the circuit.
- **Degree**: equals the formal degree of circuit defined inductively as: 1 for input variables, max for addition gates, and sum for multiplication gates.
- **Fanin**: equals the largest number of inputs to a gate in the circuit. We allow arbitrary fanin.
Arithmetic Complexity

Crucial parameters associated with an arithmetic circuit are:

- **Input length**: number of input variables. Notice that the size of individual variables is not counted!
- **Size**: equals the number of operations in the circuit (measured as a function of input length).
- **Depth**: equals the length of the longest path from a variable to output of the circuit.
- **Degree**: equals the formal degree of circuit defined inductively as: 1 for input variables, max for addition gates, and sum for multiplication gates.
- **Fanin**: equals the largest number of inputs to a gate in the circuit. We allow arbitrary fanin.
Circuit Parameters

SIZE = 16 DEPTH = 4 DEGREE = 4 FANIN = 3
Outline

1. Computation Over Rings
 - Arithmetic Circuit Model
 - Generalizing Arithmetic Circuits

2. Classes P and NP

3. Depth Reduction

4. Status of Lower Bounds

5. Polynomial Identity Testing

6. LPIT and Lower Bounds

7. Algorithms for 2-PIT and 3-PIT
Extension with Zero-test

- Many other algebraic operations cannot be computed in arithmetic circuit model: solving system of linear equations, rank of a matrix, gcd of polynomials, primality testing . . .
- Generalize the model by including another operation: zero-test.
 - This is a branching operation: check if the input is zero; if yes do A else do B.
- All the above operations can be computed in the new model.
Extension with Zero-test

• Many other algebraic operations cannot be computed in arithmetic circuit model: solving system of linear equations, rank of a matrix, gcd of polynomials, primality testing . . .

• Generalize the model by including another operation: zero-test.
 ▶ This is a branching operation: check if the input is zero; if yes do A else do B.

• All the above operations can be computed in the new model.
Extension with Zero-test

- Many other algebraic operations cannot be computed in arithmetic circuit model: solving system of linear equations, rank of a matrix, gcd of polynomials, primality testing ...
- Generalize the model by including another operation: zero-test.
 - This is a branching operation: check if the input is zero; if yes do \(A \) else do \(B \).
- All the above operations can be computed in the new model.
BSS Model

- The generalized model can still not compute simple functions, e.g., "Is $x < y$?"
- [Blum-Shub-Smale 1989] replaced zero-test with \leq operator.
 - The operator makes sense only in rings with a total ordering, e.g., \mathbb{Z}, \mathbb{Q}, \mathbb{R}.
- They showed that the model, for $R = \mathbb{Z}$ or \mathbb{Q} restores access to bits, and is therefore equivalent to the standard boolean model.
- For $R = \mathbb{R}$, they developed a new theory of complexity.
- We will not consider this model any further.
The generalized model can still not compute simple functions, e.g., "Is $x < y$?"

[Blum-Shub-Smale 1989] replaced zero-test with \leq operator.

- The operator makes sense only in rings with a total ordering, e.g., \mathbb{Z}, \mathbb{Q}, \mathbb{R}.

They showed that the model, for $R = \mathbb{Z}$ or \mathbb{Q} restores access to bits, and is therefore equivalent to the standard boolean model.

For $R = \mathbb{R}$, they developed a new theory of complexity.

We will not consider this model any further.
The generalized model can still not compute simple functions, e.g., ”Is $x < y$?”

[Blum-Shub-Smale 1989] replaced zero-test with \leq operator.

- The operator makes sense only in rings with a total ordering, e.g., \mathbb{Z}, \mathbb{Q}, \mathbb{R}.

They showed that the model, for $R = \mathbb{Z}$ or \mathbb{Q} restores access to bits, and is therefore equivalent to the standard boolean model.

- For $R = \mathbb{R}$, they developed a new theory of complexity.
- We will not consider this model any further.
BSS Model

- The generalized model can still not compute simple functions, e.g., "Is $x < y$?"
- [Blum-Shub-Smale 1989] replaced zero-test with \leq operator.
 - The operator makes sense only in rings with a total ordering, e.g., \mathbb{Z}, \mathbb{Q}, \mathbb{R}.
- They showed that the model, for $R = \mathbb{Z}$ or \mathbb{Q} restores access to bits, and is therefore equivalent to the standard boolean model.
- For $R = \mathbb{R}$, they developed a new theory of complexity.
- We will not consider this model any further.
The generalized model can still not compute simple functions, e.g., "Is \(x < y \)?"

[Blum-Shub-Smale 1989] replaced zero-test with \(\leq \) operator.
- The operator makes sense only in rings with a total ordering, e.g., \(\mathbb{Z} \), \(\mathbb{Q} \), \(\mathbb{R} \).

They showed that the model, for \(R = \mathbb{Z} \) or \(\mathbb{Q} \) restores access to bits, and is therefore equivalent to the standard boolean model.

For \(R = \mathbb{R} \), they developed a new theory of complexity.

We will not consider this model any further.
Outline

1. Computation Over Rings
 - Arithmetic Circuit Model
 - Generalizing Arithmetic Circuits

2. Classes P and NP

3. Depth Reduction

4. Status of Lower Bounds

5. Polynomial Identity Testing

6. LPIT and Lower Bounds

7. Algorithms for 2-PIT and 3-PIT
The Class P

- For both the models, the class P can be defined in an analogous way to boolean settings: all problems that can be solved by a circuit family of polynomial size.

- In the arithmetic circuit model, a problem is simply a family of polynomials, typically parameterized by the number of variables, or degree, or both:
 - Chebyshev polynomials
 \[
 T_d(x) = \sum_{k=0}^{\lfloor d/2 \rfloor} \binom{d}{2k} (x^2 - 1)^k x^{d-2k}
 \]
 by degree,
 - Determinant polynomial by number of variables, and
 - Elementary symmetric polynomials
 \[
 S_d(x_1, x_2, \ldots, x_n) = \sum_{I \subseteq [1, n], |I|=d} \prod_{j \in I} x_j
 \]
 by both degree and number of variables.
The Class P

- For both the models, the class P can be defined in an analogous way to boolean settings: all problems that can be solved by a circuit family of polynomial size.
- In the arithmetic circuit model, a problem is simply a family of polynomials, typically parameterized by the number of variables, or degree, or both:
 - Chebyshev polynomials
 \[
 T_d(x) = \sum_{k=0}^{\lfloor d/2 \rfloor} \binom{d}{2k} (x^2 - 1)^k x^{d-2k}
 \]
 by degree,
 - Determinant polynomial by number of variables, and
 - Elementary symmetric polynomials
 \[
 S_d(x_1, x_2, \ldots, x_n) = \sum_{I \subseteq [1,n], |I| = d} \prod_{j \in I} x_j,
 \]
 by both degree and number of variables.
The Class P

- For both the models, the class \mathbb{P} can be defined in an analogous way to boolean settings: *all problems that can be solved by a circuit family of polynomial size.*

- In the arithmetic circuit model, a problem is simply a family of polynomials, typically parameterized by the number of variables, or degree, or both:
 - Chebyshev polynomials
 \[
 \sum_{k=0}^{[d/2]} \binom{d}{2k} (x^2 - 1)^k x^{d-2k}
 \]
 by degree,
 - Determinant polynomial by number of variables, and
 - Elementary symmetric polynomials
 \[
 \sum_{I \subseteq [1,n], |I|=d} \prod_{j \in I} x_j,
 \]
 by both degree and number of variables.
The Class P

- For both the models, the class \mathbf{P} can be defined in an analogous way to boolean settings: all problems that can be solved by a circuit family of polynomial size.

- In the arithmetic circuit model, a problem is simply a family of polynomials, typically parameterized by the number of variables, or degree, or both:

 ▶ Chebyshev polynomials

 $$T_d(x) = \sum_{k=0}^{\lfloor d/2 \rfloor} \binom{d}{2k} (x^2 - 1)^k x^{d-2k}$$

 by degree,

 ▶ Determinant polynomial by number of variables, and

 ▶ Elementary symmetric polynomials

 $$S_d(x_1, x_2, \ldots, x_n) = \sum_{I \subseteq \{1, \ldots, n\}, |I| = d} \prod_{j \in I} x_j,$$

 by both degree and number of variables.
The Class \(P \)

- For both the models, the class \(P \) can be defined in an analogous way to boolean settings: all problems that can be solved by a circuit family of polynomial size.

- In the arithmetic circuit model, a problem is simply a family of polynomials, typically parameterized by the number of variables, or degree, or both:
 - Chebyshev polynomials

\[
T_d(x) = \sum_{k=0}^{\lfloor d/2 \rfloor} \binom{d}{2k} (x^2 - 1)^k x^{d-2k}
\]

- by degree,
 - Determinant polynomial by number of variables, and
 - Elementary symmetric polynomials

\[
S_d(x_1, x_2, \ldots, x_n) = \sum_{l \subseteq [1, n], |l| = d} \prod_{j \in l} x_j,
\]

- by both degree and number of variables.
Examples

In the arithmetic circuit model, the following problems are in P:

- Matrix operations: addition, multiplication, determinant, inverse, characteristic polynomial
- Polynomial operations: addition, multiplication, elementary symmetric polynomials
- Multivariate polynomial factorization when the polynomial is fixed
- In the arithmetic circuits with zero-test model, the following problems are also in P: solving a system of linear equations, rank of a matrix, gcd of polynomials, primality testing.
Examples

In the arithmetic circuit model, the following problems are in P:

- Matrix operations: addition, multiplication, determinant, inverse, characteristic polynomial
- Polynomial operations: addition, multiplication, elementary symmetric polynomials
- Multivariate polynomial factorization when the polynomial is fixed
- In the arithmetic circuits with zero-test model, the following problems are also in P: solving a system of linear equations, rank of a matrix, gcd of polynomials, primality testing.
In the arithmetic circuit model, the following problems are in \(P \):

- Matrix operations: addition, multiplication, determinant, inverse, characteristic polynomial
- Polynomial operations: addition, multiplication, elementary symmetric polynomials
- Multivariate polynomial factorization when the polynomial is fixed
- In the arithmetic circuits with zero-test model, the following problems are also in \(P \): solving a system of linear equations, rank of a matrix, gcd of polynomials, primality testing.
Examples

In the arithmetic circuit model, the following problems are in P:

- Matrix operations: addition, multiplication, determinant, inverse, characteristic polynomial
- Polynomial operations: addition, multiplication, elementary symmetric polynomials
- Multivariate polynomial factorization when the polynomial is fixed
- In the arithmetic circuits with zero-test model, the following problems are also in P: solving a system of linear equations, rank of a matrix, gcd of polynomials, primality testing.
Examples

In the arithmetic circuit model, the following problems are in \mathbf{P}:

- Matrix operations: addition, multiplication, determinant, inverse, characteristic polynomial
- Polynomial operations: addition, multiplication, elementary symmetric polynomials
- Multivariate polynomial factorization when the polynomial is fixed
- In the arithmetic circuits with zero-test model, the following problems are also in \mathbf{P}: solving a system of linear equations, rank of a matrix, gcd of polynomials, primality testing.
A Poor Definition of NP

- Analogous definition of NP to the boolean settings fails.
- Consider arithmetic circuit model, where each computation results in a polynomial, over $R = \mathbb{C}$.
- Say polynomial family $P_n(x_1, \ldots, x_n)$ is in NP if there exists another polynomial family $Q_{n+m+1}(x_1, \ldots, x_n, y_1, \ldots, y_m, z)$ in P such that:
 1. $m = n^{O(1)}$, and
 2. $P_n(\alpha_1, \ldots, \alpha_n) = \gamma$ iff there exists β_1, \ldots, β_m with $Q_{n+m+1}(\alpha_1, \ldots, \alpha_n, \beta_1, \ldots, \beta_m, \gamma) = 0$.
A Poor Definition of NP

- Analogous definition of NP to the boolean settings fails.
- Consider arithmetic circuit model, where each computation results in a polynomial, over $R = \mathbb{C}$.
- Say polynomial family $P_n(x_1, \ldots, x_n)$ is in NP if there exists another polynomial family $Q_{n+m+1}(x_1, \ldots, x_n, y_1, \ldots, y_m, z)$ in P such that:
 - $m = n^{O(1)}$, and
 - $P_n(\alpha_1, \ldots, \alpha_n) = \gamma$ iff there exists β_1, \ldots, β_m with $Q_{n+m+1}(\alpha_1, \ldots, \alpha_n, \beta_1, \ldots, \beta_m, \gamma) = 0$.
A Poor Definition of NP

- Analogous definition of NP to the boolean settings fails.
- Consider arithmetic circuit model, where each computation results in a polynomial, over $R = \mathbb{C}$.
- Say polynomial family $P_n(x_1, \ldots, x_n)$ is in NP if there exists another polynomial family $Q_{n+m+1}(x_1, \ldots, x_n, y_1, \ldots, y_m, z)$ in P such that:
 - $m = n^{O(1)}$, and
 - $P_n(\alpha_1, \ldots, \alpha_n) = \gamma$ iff there exists β_1, \ldots, β_m with $Q_{n+m+1}(\alpha_1, \ldots, \alpha_n, \beta_1, \ldots, \beta_m, \gamma) = 0$.
A Poor Definition of NP

- By definition, $Q_{n+m+1}(\alpha_1, \ldots, \alpha_n, y_1, \ldots, y_m, z) = 0$ iff $z = \gamma$.
- Therefore,
 $$Q_{n+m+1}(\alpha_1, \ldots, \alpha_n, y_1, \ldots, y_m, z) = \delta \cdot (z - \gamma)^t,$$
 $t > 0$.
- Since this is true for all $\alpha_1, \ldots, \alpha_n$, we can reset Q_{n+m+1} to $Q_{n+m+1}(\alpha_1, \ldots, \alpha_n, 0, \ldots, 0, z)$.
By definition, $Q_{n+m+1}(\alpha_1, \ldots, \alpha_n, y_1, \ldots, y_m, z) = 0$ iff $z = \gamma$.

Therefore,

$$Q_{n+m+1}(\alpha_1, \ldots, \alpha_n, y_1, \ldots, y_m, z) = \delta \cdot (z - \gamma)^t,$$

$t > 0$.

Since this is true for all $\alpha_1, \ldots, \alpha_n$, we can reset Q_{n+m+1} to $Q_{n+m+1}(\alpha_1, \ldots, \alpha_n, 0, \ldots, 0, z)$.

A Poor Definition of NP

- By definition, $Q_{n+m+1}(\alpha_1, \ldots, \alpha_n, y_1, \ldots, y_m, z) = 0$ iff $z = \gamma$.
- Therefore,

 $$Q_{n+m+1}(\alpha_1, \ldots, \alpha_n, y_1, \ldots, y_m, z) = \delta \cdot (z - \gamma)^t,$$

 $t > 0$.

- Since this is true for all $\alpha_1, \ldots, \alpha_n$, we can reset Q_{n+m+1} to $Q_{n+m+1}(\alpha_1, \ldots, \alpha_n, 0, \ldots, 0, z)$.
A Better Definition of NP

The Class NP [Valiant 1979]

Polynomial family \(\{P_n\} \) is in NP if there exists a family \(\{P_{n+m}\} \in P \) such that \(m = n^{O(1)} \), and for every \(n \):

\[
P_n(x_1, \ldots, x_n) = \sum_{y_1 \in \{0,1\}} \cdots \sum_{y_m \in \{0,1\}} Q_{n+m}(x_1, \ldots, x_n, y_1, \ldots, y_m).
\]

1. Here 0 and 1 are identities of \(R \).
2. The definition can be easily generalized to arithmetic circuit with zero-test model.
Examples

- All problems in P,
- Permanent family,
- Jones polynomials: representing invariants of knots,
- Tutte polynomials:

$$T_G(x, y) = \sum_{A \subseteq E} (x - 1)^{k(A) - k(E)} (y - 1)^{k(A) + |A| - |V|}$$

where $G = (V, E)$ is an undirected graph and $k(A)$ is the number of connected components in the subgraph (V, A).
Examples

- All problems in \(P \),
- Permanent family,
- Jones polynomials: representing invariants of knots,
- Tutte polynomials:

\[T_G(x, y) = \sum_{A \subseteq E} (x - 1)^{k(A) - k(E)}(y - 1)^{k(A) + |A| - |V|} \]

where \(G = (V, E) \) is an undirected graph and \(k(A) \) is the number of connected components in the subgraph \((V, A)\).
Examples

- All problems in \(P \),
- Permanent family,
- Jones polynomials: representing invariants of knots,
- Tutte polynomials:

\[
T_G(x, y) = \sum_{A \subseteq E} (x - 1)^{k(A) - k(E)} (y - 1)^{k(A) + |A| - |V|}
\]

where \(G = (V, E) \) is an undirected graph and \(k(A) \) is the number of connected components in the subgraph \((V, A) \).
Examples

- All problems in \(P \),
- Permanent family,
- Jones polynomials: representing invariants of knots,
- Tutte polynomials:

\[
T_G(x, y) = \sum_{A \subseteq E} (x - 1)^{k(A) - k(E)}(y - 1)^{k(A) + |A| - |V|}
\]

where \(G = (V, E) \) is an undirected graph and \(k(A) \) is the number of connected components in the subgraph \((V, A) \).
NP-complete Problems

Theorem [Valient 1979]

Computing permanent family is complete for NP in arithmetic circuit model: for every polynomial family \(\{Q_n\} \) in NP, for every \(n \), \(Q_n \) can be expressed as permanent of a \(n^{O(1)} \)-size matrix with variable and constant entries.

- Several other polynomial families are also NP-complete: Jones polynomials, Tutte polynomials, matching polynomial etc.
NP-complete Problems

Theorem [Valient 1979]

Computing permanent family is complete for NP in arithmetic circuit model: for every polynomial family \(\{Q_n\} \) in NP, for every \(n \), \(Q_n \) can be expressed as permanent of a \(n^{O(1)} \)-size matrix with variable and constant entries.

- Several other polynomial families are also NP-complete: Jones polynomials, Tutte polynomials, matching polynomial etc.
Is $P \neq NP$?

- The classes P and NP of arithmetic circuit model roughly correspond to computing the boolean classes $\#L$ and $\#P$ respectively:
 - Permanent is complete for $\#P$ in boolean model and for NP in arithmetic circuit model.
 - Determinant is complete for $\#L$ in boolean model and for P under quasi-polynomial size reductions in arithmetic circuit model.
- Therefore, it is a weaker question that $P \neq NP$ in boolean model: If $P \neq NP$ in boolean model then $P \neq NP$ in arithmetic circuit model.
Is $P \neq NP$?

- The classes P and NP of arithmetic circuit model roughly correspond to computing the boolean classes $#L$ and $#P$ respectively:
 - Permanent is complete for $#P$ in boolean model and for NP in arithmetic circuit model.
 - Determinant is complete for $#L$ in boolean model and for P under quasi-polynomial size reductions in arithmetic circuit model.

Therefore, it is a weaker question that $P \neq NP$ in boolean model: If $P \neq NP$ in boolean model then $P \neq NP$ in arithmetic circuit model.
Is \(P \neq NP \)?

- The classes \(P \) and \(NP \) of arithmetic circuit model roughly correspond to computing the boolean classes \(\#L \) and \(\#P \) respectively:
 - Permanent is complete for \(\#P \) in boolean model and for \(NP \) in arithmetic circuit model.
 - Determinant is complete for \(\#L \) in boolean model and for \(P \) under quasi-polynomial size reductions in arithmetic circuit model.

Therefore, it is a weaker question that \(P \neq NP \) in boolean model: If \(P \neq NP \) in boolean model then \(P \neq NP \) in arithmetic circuit model.
Is $P \neq NP$?

- The classes P and NP of arithmetic circuit model roughly correspond to computing the boolean classes $\#L$ and $\#P$ respectively:
 - Permanent is complete for $\#P$ in boolean model and for NP in arithmetic circuit model.
 - Determinant is complete for $\#L$ in boolean model and for P under quasi-polynomial size reductions in arithmetic circuit model.

- Therefore, it is a weaker question that $P \neq NP$ in boolean model: If $P \neq NP$ in boolean model then $P \neq NP$ in arithmetic circuit model.
Is $P \neq NP$?

- Even for arithmetic circuit model, proving $P \neq NP$ has been very challenging, and has remained a hypothesis.
- Henceforth, we restrict ourselves to the arithmetic model of computation.
- For arithmetic circuit model, the classes P and NP are called VP and VNP: named after Valiant.
- Over the years, this problem has become one of the most active areas of research in complexity theory.
Is $P \neq NP$?

- Even for arithmetic circuit model, proving $P \neq NP$ has been very challenging, and has remained a hypothesis.
- Henceforth, we restrict ourselves to the arithmetic model of computation.
- For arithmetic circuit model, the classes P and NP are called VP and VNP: named after Valiant.
- Over the years, this problem has become one of the most active areas of research in complexity theory.
Is $P \neq NP$?

- Even for arithmetic circuit model, proving $P \neq NP$ has been very challenging, and has remained a hypothesis.
- Henceforth, we restrict ourselves to the arithmetic model of computation.
- For arithmetic circuit model, the classes P and NP are called VP and VNP: named after Valiant.
- Over the years, this problem has become one of the most active areas of research in complexity theory.
Is P \neq NP?

- Even for arithmetic circuit model, proving $P \neq NP$ has been very challenging, and has remained a hypothesis.
- Henceforth, we restrict ourselves to the arithmetic model of computation.
- For arithmetic circuit model, the classes P and NP are called VP and VNP: named after Valiant.
- Over the years, this problem has become one of the most active areas of research in complexity theory.
Outline

1. Computation Over Rings
 - Arithmetic Circuit Model
 - Generalizing Arithmetic Circuits

2. Classes P and NP

3. Depth Reduction

4. Status of Lower Bounds

5. Polynomial Identity Testing

6. LPIT and Lower Bounds

7. Algorithms for 2-PIT and 3-PIT
Reducing Depth to $O(\log d)$

Theorem (Valiant-Skyum-Berkowitz-Rackoff, 1983)

If polynomial $P(x_1, \ldots, x_n)$ of degree d is computable by an arithmetic circuit of size $s \geq n$, then it can also be computed by an arithmetic circuit of size $s^{O(1)}$ whose depth is $O(\log d)$ and fanin of multiplication gates is two.

Another construction was given by [Allender-Jiao-Mahajan-Vinay 1994].
Reducing Depth to 4

Theorem (A-Vinay 2008)

If polynomial $P(x_1, \ldots, x_n)$ of degree d is computable by an arithmetic circuit of size $s = 2^{o(d + d \log \frac{n}{d})}$, then it can also be computed by an arithmetic circuit of size $s^{O(1)}$ of depth 4.

Extended by [Koiran 2012, Tavenas 2013].
Proof

Let the polynomial $P(x_1, \ldots, x_n)$ be computed by an arithmetic circuit C of size $t = 2^{o(d+d \log \frac{n}{d})}$.

- [Allender-Jiao-Mahajan-Vinay 1994] shows that C can be transformed to a circuit D of degree d, size $t^{O(1)}$ and depth $O(\log d)$ with multiplication gates of fanin two.
- We modify this transformation slightly to obtain a circuit D of degree d, size $t^{O(1)}$ and depth $\leq 2 \log d$ with multiplication gates of fanin ≤ 6.
- Further, the circuit D consists of alternating layers of addition and multiplication gates.
- We now describe the construction of the circuit D.

Proof

Let the polynomial $P(x_1, \ldots, x_n)$ be computed by an arithmetic circuit C of size $t = 2^{o(d + d \log \frac{n}{d})}$.

- [Allender-Jiao-Mahajan-Vinay 1994] shows that C can be transformed to a circuit D of degree d, size $t^{O(1)}$ and depth $O(\log d)$ with multiplication gates of fanin two.

- We modify this transformation slightly to obtain a circuit D of degree d, size $t^{O(1)}$ and depth $\leq 2 \log d$ with multiplication gates of fanin ≤ 6.

- Further, the circuit D consists of alternating layers of addition and multiplication gates.

- We now describe the construction of the circuit D.
Proof

Let the polynomial $P(x_1, \ldots, x_n)$ be computed by an arithmetic circuit C of size $t = 2^{o(d+d \log \frac{n}{d})}$.

- [Allender-Jiao-Mahajan-Vinay 1994] shows that C can be transformed to a circuit D of degree d, size $t^{O(1)}$ and depth $O(\log d)$ with multiplication gates of fanin two.

- We modify this transformation slightly to obtain a circuit D of degree d, size $t^{O(1)}$ and depth $\leq 2 \log d$ with multiplication gates of fanin ≤ 6.

- Further, the circuit D consists of alternating layers of addition and multiplication gates.

- We now describe the construction of the circuit D.
Proof

Let the polynomial \(P(x_1, \ldots, x_n) \) be computed by an arithmetic circuit \(C \) of size \(t = 2^{o(d + d \log \frac{n}{d})} \).

- [Allender-Jiao-Mahajan-Vinay 1994] shows that \(C \) can be transformed to a circuit \(D \) of degree \(d \), size \(t^{O(1)} \) and depth \(O(\log d) \) with multiplication gates of fanin two.
- We modify this transformation slightly to obtain a circuit \(D \) of degree \(d \), size \(t^{O(1)} \) and depth \(\leq 2 \log d \) with multiplication gates of fanin \(\leq 6 \).
- Further, the circuit \(D \) consists of alternating layers of addition and multiplication gates.
- We now describe the construction of the circuit \(D \).
Construction of D: Setup

- Make the circuit C layered with alternating layers of addition and multiplication gates.
- Make fanin of every multiplication gate two.
- Rearrange children of multiplication gates so that degree of the right child is greater than or equal to the degree of the left child.
Construction of D: Setup

- Make the circuit C layered with alternating layers of addition and multiplication gates.
- Make fanin of every multiplication gate two.
- Rearrange children of multiplication gates so that degree of the right child is greater than or equal to the degree of the left child.
Construction of D: Setup

- Make the circuit C layered with alternating layers of addition and multiplication gates.
- Make fanin of every multiplication gate two.
- Rearrange children of multiplication gates so that degree of the right child is greater than or equal to the degree of the left child.
Construction of D: Proof Trees

A proof tree rooted at gate g of circuit C is a subcircuit of C obtained as follows:

- Start with the subcircuit of C that has gate g at the top and computes the polynomial at gate g.
- For every $+$-gate in the subcircuit, retain only one input to the gate deleting the remaining input lines.
- For every $*$-gate in the subcircuit, retain both the inputs to the gate.

A proof tree rooted at gate g computes a monomial and the polynomial at g is the sum over monomials computed by all proof trees rooted at g.

Manindra Agrawal (IIT Kanpur)
Algebraic Complexity
SLAC 2015 30 / 73
Construction of D: Proof Trees

A proof tree rooted at gate g of circuit C is a subcircuit of C obtained as follows:

- Start with the subcircuit of C that has gate g at the top and computes the polynomial at gate g.
- For every $+$-gate in the subcircuit, retain only one input to the gate deleting the remaining input lines.
- For every \ast-gate in the subcircuit, retain both the inputs to the gate.

A proof tree rooted at gate g computes a monomial and the polynomial at g is the sum over monomials computed by all proof trees rooted at g.
Construction of \(D \): Proof Trees

A proof tree rooted at gate \(g \) of circuit \(C \) is a subcircuit of \(C \) obtained as follows:

- Start with the subcircuit of \(C \) that has gate \(g \) at the top and computes the polynomial at gate \(g \).
- For every \(+ \)-gate in the subcircuit, retain only one input to the gate deleting the remaining input lines.
- For every \(\ast \)-gate in the subcircuit, retain both the inputs to the gate.

A proof tree rooted at gate \(g \) computes a monomial and the polynomial at \(g \) is the sum over monomials computed by all proof trees rooted at \(g \).
Construction of D: Defining Intermediate Polynomials

- For every input variable x_i, let $[x_i]$ stand for the polynomial x_i.
- For every gate g of C, let $[g]$ stand for polynomial computed at gate g.
- For every pair of gates g and h of C, let $[g, h]$ be the polynomial:

$$[g, h] = \sum_T m(T, h)$$

where T runs over all proof trees rooted at g and $m(T, h)$ is the monomial computed by proof tree T when gate h is replaced by 1 if gate h occurs in the rightmost path of T, $m(T, h)$ is 0 otherwise.

- It follows that

$$[g] = \sum_{i=1}^{n} [g, x_i][x_i].$$
Construction of D: Defining Intermediate Polynomials

- For every input variable x_i, let $[x_i]$ stand for the polynomial x_i.
- For every gate g of C, let $[g]$ stand for polynomial computed at gate g.
- For every pair of gates g and h of C, let $[g, h]$ be the polynomial:

$$[g, h] = \sum_T m(T, h)$$

where T runs over all proof trees rooted at g and $m(T, h)$ is the monomial computed by proof tree T when gate h is replaced by 1 if gate h occurs in the rightmost path of T, $m(T, h)$ is 0 otherwise.

- It follows that

$$[g] = \sum_{i=1}^{n} [g, x_i][x_i].$$
CONSTRUCTION OF D: DEFINING INTERMEDIATE POLYNOMIALS

- For every input variable x_i, let $[x_i]$ stand for the polynomial x_i.
- For every gate g of C, let $[g]$ stand for polynomial computed at gate g.
- For every pair of gates g and h of C, let $[g, h]$ be the polynomial:

$$[g, h] = \sum_{T} m(T, h)$$

where T runs over all proof trees rooted at g and $m(T, h)$ is the monomial computed by proof tree T when gate h is replaced by 1 if gate h occurs in the rightmost path of T, $m(T, h)$ is 0 otherwise.

It follows that

$$[g] = \sum_{i=1}^{n} [g, x_i][x_i].$$
Construction of D: Defining Intermediate Polynomials

- For every input variable x_i, let $[x_i]$ stand for the polynomial x_i.
- For every gate g of C, let $[g]$ stand for polynomial computed at gate g.
- For every pair of gates g and h of C, let $[g, h]$ be the polynomial:

$$[g, h] = \sum_T m(T, h)$$

where T runs over all proof trees rooted at g and $m(T, h)$ is the monomial computed by proof tree T when gate h is replaced by 1 if gate h occurs in the rightmost path of T, $m(T, h)$ is 0 otherwise.

- It follows that

$$[g] = \sum_{i=1}^{n} [g, x_i][x_i].$$
Construction of D: Defining gates $[g, h]$

- If g is a $+$-gate with children g_1, \ldots, g_t, then

 $$[g, h] = \sum_{i=1}^{t} [g_i, h].$$

- Let g be a \ast-gate with children g_L (left child) and g_R (right child).

- A rightmost path from g to h is a path from g to h in the circuit obtained from C by deleting input line from left child of every \ast-gate.

- If there are only $+$-gates on every rightmost path from g to h then

 $$[g, h] = [g_L].$$
Construction of D: Defining gates $[g, h]$

- If g is a $+$-gate with children g_1, \ldots, g_t, then

 $$ [g, h] = \sum_{i=1}^{t} [g_i, h]. $$

- Let g be a $*$-gate with children g_L (left child) and g_R (right child).

- A rightmost path from g to h is a path from g to h in the circuit obtained from C by deleting input line from left child of every $*$-gate.

- If there are only $+$-gates on every rightmost path from g to h then

 $$ [g, h] = [g_L]. $$
Construction of \(D \): Defining gates \([g, h]\)

- If \(g \) is a \(+\)-gate with children \(g_1, \ldots, g_t \), then
 \[
 [g, h] = \sum_{i=1}^{t} [g_i, h].
 \]

- Let \(g \) be a \(*\)-gate with children \(g_L \) (left child) and \(g_R \) (right child).
- A rightmost path from \(g \) to \(h \) is a path from \(g \) to \(h \) in the circuit obtained from \(C \) by deleting input line from left child of every \(*\)-gate.
- If there are only \(+\)-gates on every rightmost path from \(g \) to \(h \) then
 \[
 [g, h] = [g_L].
 \]
Construction of D: Defining $[g, h]$

- Otherwise, there exists a $*$-gate p with children p_L and p_R in a rightmost path from g to h such that
 \[\deg(p) \geq \frac{1}{2}(\deg(g) + \deg(h)) > \deg(p_R). \]
- Then, we have:
 \[
 [g, h] = \sum_p [g, p] \cdot [p_L] \cdot [p_R, h]
 \]
 where the sum ranges over all gates p satisfying the above condition.

$\deg(g)$ stands for degree of gate g
Construction of D: Defining $[g, h]$

- Otherwise, there exists a $*$-gate p with children p_L and p_R in a rightmost path from g to h such that $\deg(p) \geq \frac{1}{2}(\deg(g) + \deg(h)) > \deg(p_R)$.

- Then, we have:

$$[g, h] = \sum_{p} [g, p] \cdot [p_L] \cdot [p_R, h]$$

where the sum ranges over all gates p satisfying the above condition.

$\deg(g)$ stands for degree of gate g
Construction of D: Defining $[g, h]$

\[[g, h] = \sum_p [g, p][p_L][p_R, h]. \]

\[\deg([g, h]) = \deg(g) - \deg(h) \]

\[\deg([p_L]) \leq \deg(g) - \deg(h) \]

\[[p_L] = \sum_i [p_L, x_i][x_i], \]
\[p_L = \sum_j p_L^j. \]
\[[p_L^j, x_i] = \sum_q [p_L^j, q][q_L][q_R, x_i]. \]

\[\deg([p_L^j, q] \leq \frac{1}{2} \deg(p_L) \]

\[\deg([q_L] \leq \frac{1}{2} \deg(p_L) \]

\[\deg([q_R, x_i] \leq \frac{1}{2} \deg(p_L) \]
Construction of D: Defining $[g, h]$

$[g, h] = \sum_p [g, p][p_L][p_R, h].$

$\text{deg}([g, h]) = \text{deg}(g) - \text{deg}(h)$

$\text{deg}([p_L]) \leq \text{deg}(g) - \text{deg}(h)$

$[p_L] = \sum_i [p_L, x_i][x_i],$

$p_L = \sum_j p_L^j.$

$[p_L^j, x_i] = \sum_q [p_L^j, q][q_L][q_R, x_i].$

$\text{deg}([p_L^j, q] \leq \frac{1}{2} \text{deg}(p_L)$

$\text{deg}([q_L] \leq \frac{1}{2} \text{deg}(p_L)$

$\text{deg}([q_R, x_i] \leq \frac{1}{2} \text{deg}(p_L)$
Construction of \(D \): Defining \([g, h] \)

\[
[g, h] = \sum_p [g, p][p_L][p_R, h].
\]

\[
\text{deg}([g, h]) = \text{deg}(g) - \text{deg}(h)
\]

\[
\text{deg}([g, p]) \leq \frac{1}{2}(\text{deg}(g) - \text{deg}(h))
\]

\[
\text{deg}([p_L]) \leq \text{deg}(g) - \text{deg}(h)
\]

\[
[p_L] = \sum_i [p_L, x_i][x_i],
\]

\[
p_L = \sum_j p'_L.
\]

\[
[p'_L, x_i] = \sum_q [p'_L, q][q_L][q_R, x_i].
\]

\[
\text{deg}([p'_L, q] \leq \frac{1}{2} \text{deg}(p_L)
\]
Construction of \(D \): Defining \([g, h]\)

\[
[g, h] = \sum_p [g, p][p_L][p_R, h].
\]

\[
\text{deg}([g, h]) = \text{deg}(g) - \text{deg}(h)
\]

\[
\text{deg}([p_R, h]) \leq \frac{1}{2}(\text{deg}(g) - \text{deg}(h))
\]

\[
\text{deg}([p_L]) \leq \text{deg}(g) - \text{deg}(h)
\]

\[
[p_L] = \sum_i [p_L, x_i][x_i],
\]

\[
p_L = \sum_j p_L^j.
\]

\[
[p_L^j, x_i] = \sum_q [p_L^j, q][q_L][q_R, x_i].
\]

\[
\text{deg}([p_L^j, q] \leq \frac{1}{2} \text{deg}(p_L)
\]
Construction of D: Defining $[g, h]$

$[g, h] = \sum p [g, p][p_L][p_R, h]$.
$\deg([g, h]) = \deg(g) - \deg(h)$

$\deg([p_L]) \leq \deg(g) - \deg(h)$

$[p_L] = \sum_i [p_L, x_i][x_i]$,
$p_L = \sum_j p'_L[j]$.

$[p'_L, x_i] = \sum_q [p'_L, q][q_L][q_R, x_i]$.
$\deg([p'_L, q] \leq \frac{1}{2} \deg(p_L)$

$\deg([q_L] \leq \frac{1}{2} \deg(p_L)$

$\deg([q_R, x_i] \leq \frac{1}{2} \deg(p_L)$
Construction of D: **Defining** $[g, h]$

$$[g, h] = \sum_p [g, p][p_L][p_R, h].$$

$$\deg([g, h]) = \deg(g) - \deg(h)$$

$$\deg([p_L]) \leq \deg(g) - \deg(h)$$

$$[p_L] = \sum_i [p_L, x_i][x_i],$$

$$p_L = \sum_j p_L^j.$$

$$[p_L^j, x_i] = \sum_q [p_L^j, q][q_L][q_R, x_i].$$

$$\deg([p_L^j, q] \leq \frac{1}{2} \deg(p_L)$$

$$\deg([q_L] \leq \frac{1}{2} \deg(p_L)$$

$$\deg([q_R, x_i] \leq \frac{1}{2} \deg(p_L)$$
Construction of D: Defining $[g, h]$

$$[g, h] = \sum_p [g, p] [p_L] [p_R, h].$$

\[\text{deg}([g, h]) = \text{deg}(g) - \text{deg}(h)\]

\[\text{deg}([p_L]) \leq \text{deg}(g) - \text{deg}(h)\]

\[[p_L] = \sum_i [p_L, x_i] [x_i],\]

\[p_L = \sum_j p'_L.\]

\[[p'_L, x_i] = \sum_q [p'_L, q] [q_L] [q_R, x_i].\]

\[\text{deg}([p'_L, q] \leq \frac{1}{2} \text{deg}(p_L)\]

\[\text{deg}([q_L] \leq \frac{1}{2} \text{deg}(p_L)\]

\[\text{deg}([q_R, x_i] \leq \frac{1}{2} \text{deg}(p_L)\]
CONSTRUCTION OF D: DEFINING $[g, h]$

\[[g, h] = \sum_p [g, p][p_L][p_R, h]. \]

\[\deg([g, h]) = \deg(g) - \deg(h) \]

\[\deg([p_L]) \leq \deg(g) - \deg(h) \]

\[[p_L] = \sum_i [p_L, x_i][x_i], \quad p_L = \sum_j p_L^j. \]

\[[p_L^j, x_i] = \sum_q [p_L^j, q][q_L][q_R, x_i]. \]

\[\deg([p_L^j, q] \leq \frac{1}{2} \deg(p_L) \]

\[\deg([q_L] \leq \frac{1}{2} \deg(p_L) \]

\[\deg([q_R, x_i] \leq \frac{1}{2} \deg(p_L) \]
Construction of D: Defining $[g, h]$

\[[g, h] = \sum_p [g, p][p_L][p_R, h]. \]

\[\text{deg}([g, h]) = \text{deg}(g) - \text{deg}(h) \]

\[\text{deg}([p_L]) \leq \text{deg}(g) - \text{deg}(h) \]

\[[p_L] = \sum_i [p_L, x_i][x_i], \]

\[p_L = \sum_j p_L^j. \]

\[[p_L^j, x_i] = \sum_q [p_L^j, q][q_L][q_R, x_i]. \]

\[\text{deg}([p_L^j, q] \leq \frac{1}{2} \text{deg}(p_L) \]

\[\text{deg}([q_L] \leq \frac{1}{2} \text{deg}(p_L) \]

\[\text{deg}([q_R, x_i] \leq \frac{1}{2} \text{deg}(p_L) \]
Construction of \(D \): Defining \([g, h] \)

\[
[g, h] = \sum_p [g, p][p_L][p_R, h].
\]

\[
\deg([g, h]) = \deg(g) - \deg(h)
\]

\[
\deg([p_L]) \leq \deg(g) - \deg(h)
\]

\[
[p_L] = \sum_i [p_L, x_i][x_i],
\]

\[
p_L = \sum_j p'_L.
\]

\[
[p'_L, x_i] = \sum_q [p'_L, q][q_L][q_R, x_i].
\]

\[
\deg([p'_L, q] \leq \frac{1}{2} \deg(p_L)
\]

\[
\deg([q_L] \leq \frac{1}{2} \deg(p_L)
\]

\[
\deg([q_R, x_i] \leq \frac{1}{2} \deg(p_L)
\]
Construction of D: Defining $[g, h]$

$$[g, h] = \sum_p [g, p][p_L][p_R, h].$$

$$\deg([g, h]) = \deg(g) - \deg(h)$$

$$\deg([p_L]) \leq \deg(g) - \deg(h)$$

$$[p_L] = \sum_i [p_L, x_i][x_i],$$

$$p_L = \sum_j p_L^j.$$

$$[p_L^j, x_i] = \sum_q [p_L^j, q][q_L][q_R, x_i].$$

$$\deg([p_L^j, q] \leq \frac{1}{2} \deg(p_L)$$

$$\deg([q_L] \leq \frac{1}{2} \deg(p_L)$$

$$\deg([q_R, x_i] \leq \frac{1}{2} \deg(p_L)$$
Construction of \(D \): Defining \([g, h]\)

Flatten the subcircuit to write \([g, h]\) as:

\[
[g, h] = \sum_p \sum_i \sum_j \sum_q \left(g, p\right)\left[p_L, j, q\right]\left[q_L\right]\left[q_R, x_i\right]\left[x_i\right]\left[p_R, h\right]
\]

with degree of each of the six polynomials in the product bounded by \(\frac{1}{2} \deg([g, h])\).
Construction of D

- By adding dummy $+$-gates and merging adjacent $+$-gates, it can be ensured that the circuit has alternating layers of $+$- and \ast-gates.
- The size of resulting circuit is $t^{O(1)}$.
- Since the degree of children of a \ast-gate is at most half of the degree of the gate, the depth of the circuit D is $\leq 2 \log d$.

Manindra Agrawal (IIT Kanpur)
Algebraic Complexity
SLAC 2015 36 / 73
Construction of D

- By adding dummy $+$-gates and merging adjacent $+$-gates, it can be ensured that the circuit has alternating layers of $+$- and \ast-gates.
- The size of resulting circuit is $t^{O(1)}$.
- Since the degree of children of a \ast-gate is at most half of the degree of the gate, the depth of the circuit D is $\leq 2 \log d$.
Replacing D

- We now replace D by a depth four circuit.
- The circuit is defined by cutting D in two halves and replacing each half by a depth two circuit.
Replacing D

- We now replace D by a depth four circuit.
- The circuit is defined by cutting D in two halves and replacing each half by a depth two circuit.
Cutting D

- Let ℓ be any function such that $\ell \leq \frac{d+d \log d}{\log t}$ and $\ell = \omega(1)$.

- Let $u = \frac{1}{2} \log_6 \ell$.

- Cut D into two halves with top half consisting of u layers of \ast-gates with the bottom layer being of \ast-gates.

- Let g_1, g_2, \ldots, g_k be the output gates of the bottom layer.

- Let the polynomial computed by gate g_i be $P_i(x_1, x_2, \ldots, x_n)$.

- The top layer can be viewed as computing a polynomial in k new variables; let this be $P_0(y_1, y_2, \ldots, y_k)$.

- Then:

$$P(x_1, \ldots, x_n) = P_0(P_1(x_1, \ldots, x_n), P_2(x_1, \ldots, x_n), \ldots, P_k(x_1, \ldots, x_n)).$$
Cutting D

- Let ℓ be any function such that $\ell \leq \frac{d+d \log d}{\log n}$ and $\ell = \omega(1)$.
- Let $u = \frac{1}{2} \log_6 \ell$.
- Cut D into two halves with top half consisting of u layers of \ast-gates with the bottom layer being of \ast-gates.
 - Let g_1, g_2, \ldots, g_k be the output gates of the bottom layer.
 - Let the polynomial computed by gate g_i be $P_i(x_1, x_2, \ldots, x_n)$.
 - The top layer can be viewed as computing a polynomial in k new variables; let this be $P_0(y_1, y_2, \ldots, y_k)$.
 - Then:

$$P(x_1, \ldots, x_n) = P_0(P_1(x_1, \ldots, x_n), P_2(x_1, \ldots, x_n), \ldots, P_k(x_1, \ldots, x_n)).$$
Cutting D

- Let ℓ be any function such that $\ell \leq \frac{d + d \log d}{\log t}$ and $\ell = \omega(1)$.
- Let $u = \frac{1}{2} \log_6 \ell$.
- Cut D into two halves with top half consisting of u layers of \ast-gates with the bottom layer being of \ast-gates.
- Let g_1, g_2, \ldots, g_k be the output gates of the bottom layer.
- Let the polynomial computed by gate g_i be $P_i(x_1, x_2, \ldots, x_n)$.
- The top layer can be viewed as computing a polynomial in k new variables; let this be $P_0(y_1, y_2, \ldots, y_k)$.
- Then:

$$P(x_1, \ldots, x_n) = P_0(P_1(x_1, \ldots, x_n), P_2(x_1, \ldots, x_n), \ldots, P_k(x_1, \ldots, x_n)).$$
Cutting D

- Let ℓ be any function such that $\ell \leq \frac{d + d \log d}{\log t}$ and $\ell = \omega(1)$.
- Let $u = \frac{1}{2} \log_6 \ell$.
- Cut D into two halves with top half consisting of u layers of \ast-gates with the bottom layer being of \ast-gates.
- Let g_1, g_2, \ldots, g_k be the output gates of the bottom layer.
- Let the polynomial computed by gate g_i be $P_i(x_1, x_2, \ldots, x_n)$.
- The top layer can be viewed as computing a polynomial in k new variables; let this be $P_0(y_1, y_2, \ldots, y_k)$.
- Then:

$$P(x_1, \ldots, x_n) = P_0(P_1(x_1, \ldots, x_n), P_2(x_1, \ldots, x_n), \ldots, P_k(x_1, \ldots, x_n)).$$
A direct counting shows that each P_j, $0 \leq j \leq k$, can be replaced by a depth two circuit of size $2^{o(d+d \log \frac{n}{d})}$.

Since $k = 2^{o(d+d \log \frac{n}{d})}$, the resulting depth four circuit, E, is of size $2^{o(d+d \log \frac{n}{d})}$.

The fanin of second layer of \ast-gates in E is at most $6^{u} = \sqrt{\ell}$ which is any small function in $\omega(1)$.

The fanin of bottom layer of \ast-gates in E is at most $\frac{d}{2^{u}} = o(d)$.

The Circuit E
The Circuit E

- A direct counting shows that each P_j, $0 \leq j \leq k$, can be replaced by a depth two circuit of size $2^{o(d+d \log \frac{n}{d})}$.

- Since $k = 2^{o(d+d \log \frac{n}{d})}$, the resulting depth four circuit, E, is of size $2^{o(d+d \log \frac{n}{d})}$.

- The fanin of second layer of $*$-gates in E is at most $6^u = \sqrt{\ell}$ which is any small function in $\omega(1)$.

- The fanin of bottom layer of $*$-gates in E is at most $\frac{d}{2^u} = o(d)$.
The Circuit E

- A direct counting shows that each P_j, $0 \leq j \leq k$, can be replaced by a depth two circuit of size $2^{o(d+d\log \frac{n}{d})}$.
- Since $k = 2^{o(d+d\log \frac{n}{d})}$, the resulting depth four circuit, E, is of size $2^{o(d+d\log \frac{n}{d})}$.
- The fanin of second layer of \ast-gates in E is at most $6^{u} = \sqrt{\ell}$ which is any small function in $\omega(1)$.
- The fanin of bottom layer of \ast-gates in E is at most $\frac{d}{2^{u}} = o(d)$.
Reducing Depth to 3

Theorem (Gupta-Kamath-Kayal-Saptharishi 2013)

If polynomial $P(x_1, \ldots, x_n)$ of degree d is computable by an arithmetic circuit of size $s = 2^{o(d + d \log \frac{n}{d})}$, then it can also be computed by an arithmetic circuit of size $s^{O(1)}$ of depth 3 if the underlying field has characteristic zero or large ($\Omega(\log s)$).
Proof Outline

- Replace each \prod layer of a depth four circuit by $\sum \land \sum$ layers resulting in a $\sum \land \sum \land \sum$ circuit using [Fischer 1994]:

$$\prod_{j=1}^{n} x_j = \frac{1}{2^{n-1}n!} \sum_{r_2,\ldots,r_n \in \{-1,1\}} (-1)^{wt(r)} (x_1 + \sum_{j=2}^{n} r_j x_j)^n,$$

where $wt(r) = |\{j \mid r_j = -1\}|$. This works for $\text{char} = 0$ or $> n$.

- Replace $\land \sum \land$ by $\sum \prod \sum$ resulting in $\sum \prod \sum$ circuit using [Saxena 2008]:

$$(\alpha_1 x_1^{\beta_1} + \alpha_2 x_2^{\beta_2} + \cdots + \alpha_n x_n^{\beta_n})^d = \text{degree } d \text{ coefficient of } d! \cdot \prod_{j=1}^{n} e^{\alpha_j x_j^{\beta_j} z}.$$

This works for $\text{char} = 0$ or $> d$.
Proof Outline

- Replace each \prod layer of a depth four circuit by $\sum \land \sum$ layers resulting in a $\sum \land \sum \land \sum$ circuit using [Fischer 1994]:

$$\prod_{j=1}^{n} x_j = \frac{1}{2^{n-1}n!} \sum_{r_2,...,r_n \in \{-1,1\}} (-1)^{wt(r)} (x_1 + \sum_{j=2}^{n} r_j x_j)^n,$$

where $wt(r) = |\{j \mid r_j = -1\}|$. This works for $\text{char} = 0$ or $> n$.

- Replace $\land \sum \land$ by $\sum \prod \sum$ resulting in $\sum \prod \sum$ circuit using [Saxena 2008]:

$$(\alpha_1 x_1^{\beta_1} + \alpha_2 x_2^{\beta_2} + \cdots + \alpha_n x_n^{\beta_n})^d = \text{degree } d \text{ coefficient of } d! \cdot \prod_{j=1}^{n} e^{\alpha_j x_j^{\beta_j} z}.$$

This works for $\text{char} = 0$ or $> d$.
Outline

1. Computation Over Rings
 - Arithmetic Circuit Model
 - Generalizing Arithmetic Circuits

2. Classes P and NP

3. Depth Reduction

4. Status of Lower Bounds

5. Polynomial Identity Testing

6. LPIT and Lower Bounds

7. Algorithms for 2-PIT and 3-PIT
Lower Bounds on Permanent and Determinant

[Jerrum-Snir 1982] Any monotone circuit family computing permanent is of exponential size.

- Monotone circuits are circuits with no negative constant.

[Shpilka-Wigderson 1999] Any depth three circuit family computing permanent (or even determinant) over \mathbb{Q} is of size $\Omega(n^2)$.

[Grigoriev-Razborov 2000] Any depth three circuit family computing permanent or determinant over a finite field is of exponential size.
Lower Bounds on Permanent and Determinant

[Jerrum-Snir 1982] Any monotone circuit family computing permanent is of exponential size.

- Monotone circuits are circuits with no negative constant.

[Shpilka-Wigderson 1999] Any depth three circuit family computing permanent (or even determinant) over \mathbb{Q} is of size $\Omega(n^2)$.

[Grigoriev-Razborov 2000] Any depth three circuit family computing permanent or determinant over a finite field is of exponential size.
Lower Bounds on Permanent and Determinant

[Jerrum-Snir 1982] Any monotone circuit family computing permanent is of exponential size.

- Monotone circuits are circuits with no negative constant.

[Shpilka-Wigderson 1999] Any depth three circuit family computing permanent (or even determinant) over \mathbb{Q} is of size $\Omega(n^2)$.

[Grigoriev-Razborov 2000] Any depth three circuit family computing permanent or determinant over a finite field is of exponential size.
Lower Bounds on Permanent and Determinant

[Raz 2004] Any multilinear formula family computing permanent or determinant is of size $n^{\Omega(\log n)}$.

- Formulas are circuits with outdegree one.
- Multilinear formulas are formulas in which every gate computes a multilinear polynomial.

[Kayal-Saha 2014] Any depth three circuit family of bottom fanin $\leq r$ computing a polynomial family in VP of degree d in n variables over fields of characteristic zero, is of size $n^{\Omega(d/r)}$.

[Kayal-Limaye-Saha-Srinivasan 2014] $2^{\Omega(\sqrt{n} \log n)}$ lower bound on homogeneous depth four circuits computing permanent over characteristic zero.

A circuit is **homogeneous** if every intermediate polynomial is homogeneous.
Lower Bounds on Permanent and Determinant

[Raz 2004] Any multilinear formula family computing permanent or determinant is of size $n^{\Omega(\log n)}$.

- Formulas are circuits with outdegree one.
- Multilinear formulas are formulas in which every gate computes a multilinear polynomial.

[Kayal-Saha 2014] Any depth three circuit family of bottom fanin $\leq r$ computing a polynomial family in VP of degree d in n variables over fields of characteristic zero, is of size $n^{\Omega(\frac{d}{r})}$.

[Kayal-Limaye-Saha-Srinivasan 2014] $2^{\Omega(\sqrt{n} \log n)}$ lower bound on homogeneous depth four circuits computing permanent over characteristic zero.

A circuit is homogeneous if every intermediate polynomial is homogeneous.
Lower Bounds on Permanent and Determinant

[Raz 2004] Any multilinear formula family computing permanent or determinant is of size $n^{\Omega(\log n)}$.

- Formulas are circuits with outdegree one.
- Multilinear formulas are formulas in which every gate computes a multilinear polynomial.

[Kayal-Saha 2014] Any depth three circuit family of bottom fanin $\leq r$ computing a polynomial family in VP of degree d in n variables over fields of characteristic zero, is of size $n^{\Omega(\frac{d}{r})}$.

[Kayal-Limaye-Saha-Srinivasan 2014] $2^{\Omega(\sqrt{n}\log n)}$ lower bound on homogeneous depth four circuits computing permanent over characteristic zero.

A circuit is homogeneous if every intermediate polynomial is homogeneous.
Outline

1. Computation Over Rings
 - Arithmetic Circuit Model
 - Generalizing Arithmetic Circuits

2. Classes P and NP

3. Depth Reduction

4. Status of Lower Bounds

5. Polynomial Identity Testing

6. LPIT and Lower Bounds

7. Algorithms for 2-PIT and 3-PIT
Definitions

PIT

Given an arithmetic circuit of size s over ring R, test if the polynomial computed by the circuit is non-zero.

Low Degree PIT (LPIT)

Given an arithmetic circuit of size s over ring R computing a polynomial of degree $\leq s$, test if the polynomial computed by the circuit is non-zero.
Definitions

PIT

Given an arithmetic circuit of size s over ring R, test if the polynomial computed by the circuit is non-zero.

Low Degree PIT (LPIT)

Given an arithmetic circuit of size s over ring R computing a polynomial of degree $\leq s$, test if the polynomial computed by the circuit is non-zero.
An Example

Is \((ux + vy)^2 + (vx - uy)^2 - (u^2 + v^2) \cdot (x^2 + y^2) \neq 0?\) [NO!]
Bipartite Matching: for graph \(G = (U, V, E) \), check if

\[
\det \begin{bmatrix}
e_{1,1}x_{1,1} & \ldots & e_{1,n}x_{1,n} \\
\vdots & \ddots & \vdots \\
e_{n,1}x_{n,1} & \ldots & e_{n,n}x_{n,n}
\end{bmatrix} \neq 0
\]

over any field, where \(E = [e_{i,j}] \). An example of LPIT.

Primality Testing: for number \(n \), check if

\[
(x + y)^n = x^n + y^n
\]

over ring \(\mathbb{Z}_n[x, y]/(x^r - 1, y^s - 1) \) for suitable \(r \) and \(s \), both \(\log^{O(1)} n \).
Applications

Bipartite Matching: for graph $G = (U, V, E)$, check if

$$\det \begin{bmatrix} e_{1,1}x_{1,1} & \cdots & e_{1,n}x_{1,n} \\ \vdots & \ddots & \vdots \\ e_{n,1}x_{n,1} & \cdots & e_{n,n}x_{n,n} \end{bmatrix} \neq 0$$

over any field, where $E = [e_{i,j}]$. An example of LPIT.

Primality Testing: for number n, check if

$$(x + y)^n = x^n + y^n$$

over ring $\mathbb{Z}_n[x, y]/(x^r - 1, y^s - 1)$ for suitable r and s, both $\log^{O(1)} n$.
Complexity of PIT

A number of randomized polynomial time algorithms are known for the problem.

- The simplest one is by [Schwartz, Zippel 1979]: Substitute random values from a small subset of \mathbb{R} (using a small extension of \mathbb{R} if required) for each variable, evaluate the circuit, and output NON-ZERO iff the result is a non-zero number.
- Others are [Chen-Kao 1997], [Lewis-Vadhan 1998], [A-Biswas 1999], ...
A number of randomized polynomial time algorithms are known for the problem.

- The simplest one is by [Schwartz, Zippel 1979]: Substitute random values from a small subset of \(R \) (using a small extension of \(R \) if required) for each variable, evaluate the circuit, and output NON-ZERO iff the result is a non-zero number.
- Others are [Chen-Kao 1997], [Lewis-Vadhan 1998], [A-Biswas 1999],
A number of randomized polynomial time algorithms are known for the problem.

- The simplest one is by [Schwartz, Zippel 1979]: Substitute random values from a small subset of R (using a small extension of R if required) for each variable, evaluate the circuit, and output NON-ZERO iff the result is a non-zero number.

- Others are [Chen-Kao 1997], [Lewis-Vadhan 1998], [A-Biswas 1999], ...
Determination Algorithm for PIT

Open Question

Is there a deterministic polynomial time algorithm for PIT?

- Long-standing open problem.
- A positive answer also yields a lower bound.
Deterministic Algorithm for PIT

Open Question

Is there a deterministic polynomial time algorithm for PIT?

- Long-standing open problem.
- A positive answer also yields a lower bound.
Deterministic Algorithm for PIT

Open Question
Is there a deterministic polynomial time algorithm for PIT?

- Long-standing open problem.
- A positive answer also yields a lower bound.
Two Types of Deterministic Algorithms for PIT

White Box
A white-box time $t(n)$ algorithm for PIT is a deterministic algorithm solving the problem in time at most $t(n)$.

Black Box
A black-box time $t(n)$ algorithm for PIT is a deterministic algorithm running in time $t(n)$ that, given an arithmetic circuit, determines if it computes non-zero polynomial with access only to input-output lines and size of the circuit.
Two Types of Deterministic Algorithms for PIT

White Box

A white-box time $t(n)$ algorithm for PIT is a deterministic algorithm solving the problem in time at most $t(n)$.

Black Box

A black-box time $t(n)$ algorithm for PIT is a deterministic algorithm running in time $t(n)$ that, given an arithmetic circuit, determines if it computes non-zero polynomial with access only to input-output lines and size of the circuit.
Outline

1. Computation Over Rings
 - Arithmetic Circuit Model
 - Generalizing Arithmetic Circuits

2. Classes P and NP

3. Depth Reduction

4. Status of Lower Bounds

5. Polynomial Identity Testing

6. LPIT and Lower Bounds

7. Algorithms for 2-PIT and 3-PIT
Theorem (Kabanets-Impagliazzo 2003)

If there exists a white-box polynomial-time algorithm for LPIT then NEXP requires superpolynomial size arithmetic circuits.
LPIT and Lower Bounds I

Proof.

- Assume \textbf{NEXP} has polynomial-size arithmetic circuits and PIT has a polynomial-time algorithm.
- Construct an \textbf{NP} machine to compute permanent that guesses the circuit for the permanent and verifies it recursively using PIT:
 - If $C(x_1,1, \ldots, x_1,n, \ldots, x_n,1, \ldots, x_n,n)$ is circuit for permanent of $n \times n$ matrices, then we can extract from it circuit C_j for permanent of $j \times j$ matrices for $j < n$.
 - Using LPIT, verify the correctness of C:
 \[
 C_j(\bar{x}) = x_1,1 C_{j-1}(\bar{x}_1) + \cdots + x_1,j C_{j-1}(\bar{x}_j)
 \]
 where \bar{x}_i drops first row and ith column.
- This implies $\#P$ is in \textbf{NP}. Since \textbf{NEXP} $=$ $\#P$ by assumption, we get $\textbf{NEXP} = \textbf{NP}$ contradicting time hierarchy theorem.
Proof.

- Assume NEXP has polynomial-size arithmetic circuits and PIT has a polynomial-time algorithm.
- Construct an NP machine to compute permanent that guesses the circuit for the permanent and verifies it recursively using PIT:
 - If $C(x_1,1,\ldots,x_1,n,\ldots,x_n,1,\ldots,x_n,n)$ is circuit for permanent of $n \times n$ matrices, then we can extract from it circuit C_j for permanent of $j \times j$ matrices for $j < n$.
 - Using LPIT, verify the correctness of C:
 \[
 C_j(\bar{x}) = x_{1,1}C_{j-1}(\bar{x}_1) + \cdots + x_{1,j}C_{j-1}(\bar{x}_j)
 \]
 where \bar{x}_i drops first row and ith column.
- This implies $\#P$ is in NP. Since $\text{NEXP} = \#P$ by assumption, we get $\text{NEXP} = \text{NP}$ contradicting time hierarchy theorem.
LPIT and Lower Bounds I

Proof.

- Assume \textsc{NEXP} has polynomial-size arithmetic circuits and \textsc{PIT} has a polynomial-time algorithm.
- Construct an \textsc{NP} machine to compute permanent that guesses the circuit for the permanent and verifies it recursively using \textsc{PIT}:
 - If \(C(x_1,1, \ldots, x_1,n, \ldots, x_n,1, \ldots, x_n,n) \) is circuit for permanent of \(n \times n \) matrices, then we can extract from it circuit \(C_j \) for permanent of \(j \times j \) matrices for \(j < n \).
 - Using LPIT, verify the correctness of \(C \):
 \[
 C_j(\bar{x}) = x_{1,1} C_{j-1}(\bar{x}_1) + \cdots + x_{1,j} C_{j-1}(\bar{x}_j)
 \]
 where \(\bar{x}_i \) drops first row and \(i \)th column.
- This implies \(\#P \) is in \textsc{NP}. Since \(\textsc{NEXP} = \#P \) by assumption, we get \(\textsc{NEXP} = \textsc{NP} \) contradicting time hierarchy theorem.
LPIT and Lower Bounds I

Proof.

- Assume **NEXP** has polynomial-size arithmetic circuits and **PIT** has a polynomial-time algorithm.

- Construct an **NP** machine to compute permanent that guesses the circuit for the permanent and verifies it recursively using **PIT**:

 ▶ If $C(x_1,1, \ldots, x_1,n, \ldots, x_n,1, \ldots, x_n,n)$ is circuit for permanent of $n \times n$ matrices, then we can extract from it circuit C_j for permanent of $j \times j$ matrices for $j < n$.

 ▶ Using LPIT, verify the correctness of C:

 $$C_j(\bar{x}) = x_{1,1}C_{j-1}(\bar{x}_1) + \cdots + x_{1,j}C_{j-1}(\bar{x}_j)$$

 where \bar{x}_i drops first row and ith column.

- This implies **#P** is in **NP**. Since **NEXP** = **#P** by assumption, we get **NEXP** = **NP** contradicting time hierarchy theorem.
LPIT and Lower Bounds I

Proof.

- Assume \textbf{NEXP} has polynomial-size arithmetic circuits and \textbf{PIT} has a polynomial-time algorithm.

- Construct an \textbf{NP} machine to compute permanent that guesses the circuit for the permanent and verifies it recursively using \textbf{PIT}:

 ▶ If \(C(x_1, 1, \ldots, x_1, n, \ldots, x_n, 1, \ldots, x_n, n) \) is circuit for permanent of \(n \times n \) matrices, then we can extract from it circuit \(C_j \) for permanent of \(j \times j \) matrices for \(j < n \).

 ▶ Using \textbf{LPIT}, verify the correctness of \(C \):

 \[
 C_j(\overline{x}) = x_{1,1} C_{j-1}(\overline{x}_1) + \cdots + x_{1,j} C_{j-1}(\overline{x}_j)
 \]

 where \(\overline{x}_i \) drops first row and \(i \)th column.

- This implies \(\#P \) is in \textbf{NP}. Since \(\text{NEXP} = \#P \) by assumption, we get \(\text{NEXP} = \text{NP} \) contradicting time hierarchy theorem.
Theorem (Heintz-Schnorr 1980, A 2005)

If there exist a black-box polynomial-time algorithm for LPIT then E requires exponential size arithmetic circuits.
LPIT and Lower Bounds II

Proof.

- Let \(\mathcal{A} \) be a black-box polynomial-time algorithm for LPIT.
- For a circuit of size \(s \) on \(n \) variables, \(\mathcal{A} \) will evaluate it on a sequence of inputs and accept iff any of the outputs in non-zero.
- Let these inputs be \((\alpha_{1,1}, \ldots, \alpha_{1,n}), \ldots, (\alpha_{t,1}, \ldots, \alpha_{t,n})\) with \(t = s^{O(1)} \).
- Let \(m = \lceil \log(t + 1) \rceil = O(\log s) \).
- Define polynomial \(r_m \) as:

\[
r_m(x_1, x_2, \ldots, x_m) = \sum_{S \subseteq [1,m]} c_S \prod_{i \in S} x_i.
\]

Coefficients \(c_S \in F \) satisfy:

\[
\sum_{S \subseteq [1,m]} c_S \prod_{i \in S} \alpha_{j,i} = 0
\]

for every \(1 \leq j \leq t \).
LPIT and Lower Bounds II

Proof.

- Let A be a black-box polynomial-time algorithm for LPIT.
- For a circuit of size s on n variables, A will evaluate it on a sequence of inputs and accept iff any of the outputs in non-zero.
- Let these inputs be $(\alpha_{1,1}, \ldots, \alpha_{1,n}), \ldots, (\alpha_{t,1}, \ldots, \alpha_{t,n})$ with $t = s^{O(1)}$.
- Let $m = \lceil \log(t + 1) \rceil = O(\log s)$.
- Define polynomial r_m as:
 \[r_m(x_1, x_2, \ldots, x_m) = \sum_{S \subseteq [1, m]} c_S \prod_{i \in S} x_i. \]
- Coefficients $c_S \in F$ satisfy:
 \[\sum_{S \subseteq [1, m]} c_S \prod_{i \in S} \alpha_{j,i} = 0 \]
 for every $1 \leq j \leq t$.
LPIT and Lower Bounds II

Proof.

- Let A be a black-box polynomial-time algorithm for LPIT.
- For a circuit of size s on n variables, A will evaluate it on a sequence of inputs and accept iff any of the outputs in non-zero.
- Let these inputs be $(\alpha_{1,1}, \ldots, \alpha_{1,n}), \ldots, (\alpha_{t,1}, \ldots, \alpha_{t,n})$ with $t = s^{O(1)}$.
- Let $m = \lceil \log(t + 1) \rceil = O(\log s)$.
- Define polynomial r_m as:

$$r_m(x_1, x_2, \ldots, x_m) = \sum_{S \subseteq [1,m]} c_S \prod_{i \in S} x_i.$$

- Coefficients $c_S \in F$ satisfy:

$$\sum_{S \subseteq [1,m]} c_S \prod_{i \in S} \alpha_{j,i} = 0$$

for every $1 \leq j \leq t$.
A non-zero r_m always exists since it has $\geq t + 1$ coefficients that satisfy t homogeneous linear equations.

- Polynomial r_m can be computed by exponential size arithmetic circuits.

- Circuit complexity of r_m is more than $s = 2^{\Omega(m)}$.
A non-zero r_m always exists since it has $\geq t + 1$ coefficients that satisfy t homogeneous linear equations.

Polynomial r_m can be computed by exponential size arithmetic circuits.

Circuit complexity of r_m is more than $s = 2^{\Omega(m)}$.
• A non-zero r_m always exists since it has $\geq t + 1$ coefficients that satisfy t homogeneous linear equations.
• Polynomial r_m can be computed by exponential size arithmetic circuits.
• Circuit complexity of r_m is more than $s = 2^{\Omega(m)}$.
Fixed Depth PIT

Depth d PIT

d-PIT is the problem to decide if a given arithmetic circuit of depth d (alternating sums and products with top gate being sum) computes a non-zero polynomial.

d-PIT is a restriction of LPIT.
Fixed Depth PIT

Depth \(d \) PIT

\(d \)-PIT is the problem to decide if a given arithmetic circuit of depth \(d \) (alternating sums and products with top gate being sum) computes a non-zero polynomial.

\(d \)-PIT is a restriction of LPIT.
3-PIT and Lower Bounds

Theorem (Gupta-Kamath-Kayal-Saptharishi 2013)

If there exist a polynomial-time black-box algorithm for 3-PIT then E requires exponential size arithmetic circuits if the underlying field has characteristic zero or large ($\Omega(\log s)$).

Theorem

If there exists a white-box polynomial-time algorithm for 3-PIT then NEXP requires superpolynomial size arithmetic circuits.
Theorem (Gupta-Kamath-Kayal-Saptharishi 2013)

If there exist a polynomial-time black-box algorithm for 3-PIT then E requires exponential size arithmetic circuits if the underlying field has characteristic zero or large ($= \Omega(\log s)$).

Theorem

If there exists a white-box polynomial-time algorithm for 3-PIT then NEXP requires superpolynomial size arithmetic circuits.
Outline

1. **Computation Over Rings**
 - Arithmetic Circuit Model
 - Generalizing Arithmetic Circuits

2. **Classes P and NP**

3. **Depth Reduction**

4. **Status of Lower Bounds**

5. **Polynomial Identity Testing**

6. **LPIT and Lower Bounds**

7. **Algorithms for 2-PIT and 3-PIT**
Theorem (Folklore)

There exists a polynomial-time black-box algorithm for 2-PIT.
Proof.

- A $\sum \prod$ circuit computes a sparse polynomial.
- Let C be the given $\sum \prod$ circuit of size s computing a polynomial of degree $\leq d$.
- One of the substitutions
 \[(x_1, \ldots, x_i, \ldots, x_n) = (y, \ldots, y^{(d+1)^i-1} \pmod r, \ldots, y^{(d+1)^{n-1} \pmod r}),
 1 < r < s^2,
\] will ensure that all terms of the polynomial remain distinct.
2-PIT

Proof.

- A $\Sigma \Pi$ circuit computes a sparse polynomial.
- Let C be the given $\Sigma \Pi$ circuit of size s computing a polynomial of degree $\leq d$.
- One of the substitutions

 $(x_1, \ldots, x_i, \ldots, x_n) = (y, \ldots, y^{(d+1)^{i-1}} \pmod{r}, \ldots, y^{(d+1)^{n-1}} \pmod{r})$,

 $1 < r < s^2$, will ensure that all terms of the polynomial remain distinct.
3-PIT with Bounded Top Fanin

Sequence of solutions for 3-PIT with top sum gate of fanin k:

[Dvir-Shpilka 2005] White-box $2^{(\log s)^k}$ time algorithm.

[Karnin-Shpilka 2008] Black-box $s^{O(\log^k s)}$ time algorithm.

[Saxena-Seshadri 2009] Black-box $s^{k^3 \log s}$ time algorithm.

[Kayal-Saraf 2009] Black-box s^k time algorithm over characteristic zero fields.

[Saxena-Seshadri 2011] Black-box $s^{O(k)}$ time algorithm.

[A-Saha-Saptharishi-Saxena 2012] Black-box $s^{O(k)}$ time algorithm for zero or large characteristic fields.
3-PIT with Bounded Top Fanin

Sequence of solutions for 3-PIT with top sum gate of fanin k:

[Dvir-Shpilka 2005] White-box $2^{(\log s)^k}$ time algorithm.

[Karnin-Shpilka 2008] Black-box $s^{O(\log^k s)}$ time algorithm.

[Saxena-Seshadri 2009] Black-box $s^{k^3 \log s}$ time algorithm.

[Kayal-Saraf 2009] Black-box s^{k^k} time algorithm over characteristic zero fields.

[Saxena-Seshadri 2011] Black-box $s^{O(k)}$ time algorithm.

[A-Saha-Saptharishi-Saxena 2012] Black-box $s^{O(k)}$ time algorithm for zero or large characteristic fields.
Sequence of solutions for 3-PIT with top sum gate of fanin k:

[Dvir-Shpilka 2005] White-box $2^{(\log s)^k}$ time algorithm.

[Karnin-Shpilka 2008] Black-box $s^{O(\log^k s)}$ time algorithm.

[Saxena-Seshadri 2009] Black-box $s^{k^3 \log s}$ time algorithm.

[Kayal-Saraf 2009] Black-box s^{k^k} time algorithm over characteristic zero fields.

[Saxena-Seshadri 2011] Black-box $s^{O(k)}$ time algorithm.

[A-Saha-Saptharishi-Saxena 2012] Black-box $s^{O(k)}$ time algorithm for zero or large characteristic fields.
3-PIT with Bounded Top Fanin

Sequence of solutions for 3-PIT with top sum gate of fanin k:

[**Dvir-Shpilka 2005**] White-box $2^{(\log s)^k}$ time algorithm.

[**Kayal-Saxena 2006**] White-box $s^{O(k)}$ time algorithm.

[**Karnin-Shpilka 2008**] Black-box $s^{O(\log^k s)}$ time algorithm.

[**Saxena-Seshadri 2009**] Black-box $s^{k^3 \log s}$ time algorithm.

[**Kayal-Saraf 2009**] Black-box s^{k^k} time algorithm over characteristic zero fields.

[**Saxena-Seshadri 2011**] Black-box $s^{O(k)}$ time algorithm.

[**A-Saha-Saptharishi-Saxena 2012**] Black-box $s^{O(k)}$ time algorithm for zero or large characteristic fields.
3-PIT with Bounded Top Fanin

Sequence of solutions for 3-PIT with top sum gate of fanin k:

[Dvir-Shpilka 2005] White-box $2^{(\log s)^k^2}$ time algorithm.

[Karnin-Shpilka 2008] Black-box $s^{O(\log^k s)}$ time algorithm.

[Saxena-Seshadri 2009] Black-box $s^{k^3 \log s}$ time algorithm.

[Kayal-Saraf 2009] Black-box s^{k^k} time algorithm over characteristic zero fields.

[Saxena-Seshadri 2011] Black-box $s^{O(k)}$ time algorithm.

[A-Saha-Saptharishi-Saxena 2012] Black-box $s^{O(k)}$ time algorithm for zero or large characteristic fields.
Sequence of solutions for 3-PIT with top sum gate of fanin k:

[Dvir-Shpilka 2005] White-box $2^{(\log s)^k}$ time algorithm.

[Karnin-Shpilka 2008] Black-box $s^{O(\log^k s)}$ time algorithm.

[Saxena-Seshadri 2009] Black-box $s^{k^3 \log s}$ time algorithm.

[Kayal-Saraf 2009] Black-box s^{k^k} time algorithm over characteristic zero fields.

[Saxena-Seshadri 2011] Black-box $s^{O(k)}$ time algorithm.

[A-Saha-Saptharishi-Saxena 2012] Black-box $s^{O(k)}$ time algorithm for zero or large characteristic fields.
3-PIT with Bounded Top Fanin

Sequence of solutions for 3-PIT with top sum gate of fanin k:

[Dvir-Shpilka 2005] White-box $2^{(\log s)^k^2}$ time algorithm.

[Karnin-Shpilka 2008] Black-box $s^{O(\log^k s)}$ time algorithm.

[Saxena-Seshadri 2009] Black-box $s^{k^3 \log s}$ time algorithm.

[Kayal-Saraf 2009] Black-box s^{k^k} time algorithm over characteristic zero fields.

[Saxena-Seshadri 2011] Black-box $s^{O(k)}$ time algorithm.

[A-Saha-Saptharishi-Saxena 2012] Black-box $s^{O(k)}$ time algorithm for zero or large characteristic fields.
Jacobian Based Algorithm

- Let $P = \sum_{i=1}^{k} T_i$, $T_i = \prod_{j=1}^{s} L_{i,j}$ be the given circuit with $L_{i,j} = \alpha_{i,j,0} + \sum_{\ell=1}^{n} \alpha_{i,j,\ell}x_{\ell}$.
- Assume that $P \neq 0$ and T_i’s are algebraically independent:
 - There is no polynomial $Q(y_1, y_2, \ldots, y_k)$ such that $Q(T_1, T_2, \ldots, T_k) = 0$.
- For characteristic zero or $> s^k$: T_1, \ldots, T_k are algebraically independent iff $J(T_1, T_2, \ldots, T_k)$ has full rank, where

$$J(y_1, y_2, \ldots, y_k) = \begin{bmatrix}
\frac{\partial y_1}{\partial x_1} & \frac{\partial y_1}{\partial x_2} & \cdots & \frac{\partial y_1}{\partial x_n} \\
\vdots & \vdots & \ddots & \vdots \\
\frac{\partial y_k}{\partial x_1} & \frac{\partial y_k}{\partial x_2} & \cdots & \frac{\partial y_k}{\partial x_n}
\end{bmatrix}.$$
Jacobian Based Algorithm

- Let \(P = \sum_{i=1}^{k} T_i, \quad T_i = \prod_{j=1}^{s} L_{i,j} \) be the given circuit with \(L_{i,j} = \alpha_{i,j,0} + \sum_{\ell=1}^{n} \alpha_{i,j,\ell} x_{\ell} \).
- Assume that \(P \neq 0 \) and \(T_i \)'s are algebraically independent:
 - There is no polynomial \(Q(y_1, y_2, \ldots, y_k) \) such that \(Q(T_1, T_2, \ldots, T_k) = 0 \).
- For characteristic zero or \(> s^k \): \(T_1, \ldots, T_k \) are algebraically independent iff \(J(T_1, T_2, \ldots, T_k) \) has full rank, where

\[
J(y_1, y_2, \ldots, y_k) = \begin{bmatrix}
\frac{\partial y_1}{\partial x_1} & \frac{\partial y_1}{\partial x_2} & \cdots & \frac{\partial y_1}{\partial x_n} \\
\vdots & \vdots & \ddots & \vdots \\
\frac{\partial y_k}{\partial x_1} & \frac{\partial y_k}{\partial x_2} & \cdots & \frac{\partial y_k}{\partial x_n}
\end{bmatrix}.
\]
Jacobian Based Algorithm

- Let \(P = \sum_{i=1}^{k} T_i \), \(T_i = \prod_{j=1}^{s} L_{i,j} \) be the given circuit with \(L_{i,j} = \alpha_{i,j,0} + \sum_{\ell=1}^{n} \alpha_{i,j,\ell} x_{\ell} \).
- Assume that \(P \neq 0 \) and \(T_i \)'s are algebraically independent:
 - There is no polynomial \(Q(y_1, y_2, \ldots, y_k) \) such that \(Q(T_1, T_2, \ldots, T_k) = 0 \).
- For characteristic zero or \(> s^k \): \(T_1, \ldots, T_k \) are algebraically independent iff \(J(T_1, T_2, \ldots, T_k) \) has full rank, where

\[
J(y_1, y_2, \ldots, y_k) = \begin{bmatrix}
\frac{\partial y_1}{\partial x_1} & \frac{\partial y_1}{\partial x_2} & \cdots & \frac{\partial y_1}{\partial x_n} \\
\vdots & \vdots & \ddots & \vdots \\
\frac{\partial y_k}{\partial x_1} & \frac{\partial y_k}{\partial x_2} & \cdots & \frac{\partial y_k}{\partial x_n}
\end{bmatrix}.
\]
Therefore, $J(T_1, \ldots, T_k)$ has rank k.

We have:

$$J(T_1, T_2, \ldots, T_k) = \begin{bmatrix}
\frac{\partial T_1}{\partial x_1} & \frac{\partial T_1}{\partial x_2} & \cdots & \frac{\partial T_1}{\partial x_n} \\
\vdots & \vdots & \ddots & \vdots \\
\frac{\partial T_k}{\partial x_1} & \frac{\partial T_k}{\partial x_2} & \cdots & \frac{\partial T_k}{\partial x_n}
\end{bmatrix} = \begin{bmatrix}
T_1 \sum_{j=1}^{d} \frac{\alpha_{1,j,1}}{L_{1,j}} & \cdots & T_1 \sum_{j=1}^{d} \frac{\alpha_{1,j,n}}{L_{1,j}} \\
\vdots & \ddots & \vdots \\
T_k \sum_{j=1}^{d} \frac{\alpha_{k,j,1}}{L_{k,j}} & \cdots & T_k \sum_{j=1}^{d} \frac{\alpha_{k,j,n}}{L_{k,j}}
\end{bmatrix}$$
Therefore, \(J(T_1, \ldots, T_k) \) has rank \(k \).

We have:

\[
J(T_1, T_2, \ldots, T_k) = \begin{bmatrix}
\frac{\partial T_1}{\partial x_1} & \frac{\partial T_1}{\partial x_2} & \cdots & \frac{\partial T_1}{\partial x_n} \\
\vdots & \vdots & \ddots & \vdots \\
\frac{\partial T_k}{\partial x_1} & \frac{\partial T_k}{\partial x_2} & \cdots & \frac{\partial T_k}{\partial x_n}
\end{bmatrix}
\]

\[
= \begin{bmatrix}
T_1 \sum_{j=1}^d \frac{\alpha_{1,j,1}}{L_{1,j}} & \cdots & T_1 \sum_{j=1}^d \frac{\alpha_{1,j,n}}{L_{1,j}} \\
\vdots & \ddots & \vdots \\
T_k \sum_{j=1}^d \frac{\alpha_{k,j,1}}{L_{k,j}} & \cdots & T_k \sum_{j=1}^d \frac{\alpha_{k,j,n}}{L_{k,j}}
\end{bmatrix}
\]
Jacobian Based Algorithm

- Assume, wlog, that columns corresponding to variables x_1, x_2, \ldots, x_k have rank k.

- Let

$$
\hat{P} = \begin{vmatrix}
T_1 \sum_{j=1}^{d} \frac{\alpha_{1,j,1}}{L_{1,j}} & \cdots & T_1 \sum_{j=1}^{d} \frac{\alpha_{1,j,k}}{L_{1,j}} \\
\vdots & \ddots & \vdots \\
T_k \sum_{j=1}^{d} \frac{\alpha_{k,j,1}}{L_{k,j}} & \cdots & T_k \sum_{j=1}^{d} \frac{\alpha_{k,j,k}}{L_{k,j}}
\end{vmatrix}
$$

$$
= \prod_{i=1}^{k} T_i \cdot \begin{vmatrix}
\sum_{j=1}^{d} \frac{\alpha_{1,j,1}}{L_{1,j}} & \cdots & \sum_{j=1}^{d} \frac{\alpha_{1,j,k}}{L_{1,j}} \\
\vdots & \ddots & \vdots \\
\sum_{j=1}^{d} \frac{\alpha_{k,j,1}}{L_{k,j}} & \cdots & \sum_{j=1}^{d} \frac{\alpha_{k,j,k}}{L_{k,j}}
\end{vmatrix}
$$

$$
= \prod_{i=1}^{k} T_i \cdot R,
$$

where R is a sparse rational function.
Jacobian Based Algorithm

- Assume, wlog, that columns corresponding to variables x_1, x_2, \ldots, x_k have rank k.
- Let

$$\hat{P} = \begin{vmatrix}
T_1 \sum_{j=1}^{d} \frac{\alpha_{1,j,1}}{L_{1,j}} & \cdots & T_1 \sum_{j=1}^{d} \frac{\alpha_{1,j,k}}{L_{1,j}} \\
\vdots & \ddots & \vdots \\
T_k \sum_{j=1}^{d} \frac{\alpha_{k,j,1}}{L_{k,j}} & \cdots & T_k \sum_{j=1}^{d} \frac{\alpha_{k,j,k}}{L_{k,j}}
\end{vmatrix}$$

$$= \prod_{i=1}^{k} T_i \cdot R,$$

where R is a sparse rational function.
Since \hat{P} is a product of sparse polynomials and rational functions, the set of substitutions as used for 2-PIT will ensure that \hat{P} remains non-zero under one of them.

For this substitution, the Jacobian has full rank and therefore the circuit output remains non-zero.
Since \hat{P} is a product of sparse polynomials and rational functions, the set of substitutions as used for 2-PIT will ensure that \hat{P} remains non-zero under one of them.

- For this substitution, the Jacobian has full rank and therefore the circuit output remains non-zero.
3-PIT for Diagonal Circuits

Diagonal Circuits
Circuits where each multiplication gate is a powering gate.

Theorem (Forbes-Shpilka 2012, A-Saha-Saxena 2013)
There exists a $s^{O(\log s)}$-time black-box algorithm for diagonal 3-PIT.
3-PIT for Diagonal Circuits

Diagonal Circuits
Circuits where each multiplication gate is a powering gate.

Theorem (Forbes-Shpilka 2012, A-Saha-Saxena 2013)

There exists a $s^{O(\log s)}$-time black-box algorithm for diagonal 3-PIT.
Let $P = \sum_{i=1}^{k} T_i$, $T_i = L_i^d$ be the given circuit with $L_i = \alpha_{i,0} + \sum_{\ell=1}^{n} \alpha_{i,\ell} x_\ell$.

The polynomial can be rewritten as:

$$P = \bar{1} \cdot (\bar{u}_0 + \bar{u}_1 x_1 + \cdots + \bar{u}_n x_n)^d,$$

where $\bar{u}_\ell = [\alpha_{1,\ell} \cdots \alpha_{k,\ell}]$.
Let $P = \sum_{i=1}^{k} T_i$, $T_i = L_i^d$ be the given circuit with $L_i = \alpha_{i,0} + \sum_{\ell=1}^{n} \alpha_{i,\ell} x_\ell$.

The polynomial can be rewritten as:

$$P = \bar{1} \cdot (\bar{u}_0 + \bar{u}_1 x_1 + \cdots + \bar{u}_n x_n)^d,$$

where $\bar{u}_\ell = [\alpha_{1,\ell} \cdots \alpha_{k,\ell}]$.
Now consider the following polynomial with vectors over F^k as coefficients:

$$Q = (\bar{u}_0 + \bar{u}_1 x_1 + \cdots + \bar{u}_n x_n)^d = \sum_{S \in [0,d]^n} \bar{v}_S \bar{x}^S$$

where $S = (d_1, d_2, \ldots, d_n)$, \bar{v}_S is Hadamard product of d \bar{u}'s, and $\bar{x}^S = \prod_{i=1}^n x_i^{d_i}$.

Consider the vectors $\bar{v}_S \in F^k$.

Let the dimension of the space spanned by these vectors be $m \leq k$.

Rank Concentration Based Algorithm
Now consider the following polynomial with vectors over F^k as coefficients:

$$Q = (\bar{u}_0 + \bar{u}_1 x_1 + \cdots + \bar{u}_n x_n)^d$$

$$= \sum_{S \in [0,d]^n} \bar{v}_S \bar{x}^S$$

where $S = (d_1, d_2, \ldots, d_n)$, \bar{v}_S is Hadamard product of d \bar{u}'s, and $\bar{x}^S = \prod_{i=1}^{n} x_i^{d_i}$.

Consider the vectors $\bar{v}_S \in F^k$.

Let the dimension of the space spanned by these vectors be $m \leq k$.
Rank Concentration Based Algorithm

- ℓ-rank concentration is the property that \bar{v}_S of support ℓ (i.e., S with only ℓ non-zero d_i’s) span this space.

- If there is ℓ-rank concentration, the PIT can be solved by setting all but ℓ x’s to zero and evaluating the resulting polynomial.
Rank Concentration Based Algorithm

- \(\ell\)-rank concentration is the property that \(\bar{\nu}_S\) of support \(\ell\) (i.e., \(S\) with only \(\ell\) non-zero \(d_i\)'s) span this space.

- If there is \(\ell\)-rank concentration, the PIT can be solved by setting all but \(\ell\) \(x\)'s to zero and evaluating the resulting polynomial.
The space spanned by \bar{v}_S has $\log m$-rank concentration:

- Consider a monomial \bar{x}^S with support $> \log m$. It has $> m$ monomials strictly below it in lex-ordering.
- There must be linear dependence between coefficients associated with these lower monomials.
- Define a total ordering on monomials by fixing an arbitrary order between variables.
- Take a linear dependence equation for lower monomial coefficients, identify the largest monomial in total order, and multiply the equation with coefficient of a monomial such that the largest monomial becomes \bar{x}^S.
- This makes coefficient of \bar{x}^S linearly dependent on smaller monomial coefficients in total order.
The space spanned by \bar{v}_S has $\log m$-rank concentration:

- Consider a monomial \bar{x}^S with support $> \log m$. It has $> m$ monomials strictly below it in lex-ordering.
- There must be linear dependence between coefficients associated with these lower monomials.
- Define a total ordering on monomials by fixing an arbitrary order between variables.
- Take a linear dependence equation for lower monomial coefficients, identify the largest monomial in total order, and multiply the equation with coefficient of a monomial such that the largest monomial becomes \bar{x}^S.
- This makes coefficient of \bar{x}^S linearly dependent on smaller monomial coefficients in total order.
The space spanned by \bar{v}_S has $\log m$-rank concentration:

- Consider a monomial \bar{x}^S with support $> \log m$. It has $> m$ monomials strictly below it in lex-ordering.
- There must be linear dependence between coefficients associated with these lower monomials.
- Define a total ordering on monomials by fixing an arbitrary order between variables.
- Take a linear dependence equation for lower monomial coefficients, identify the largest monomial in total order, and multiply the equation with coefficient of a monomial such that the largest monomial becomes \bar{x}^S.
- This makes coefficient of \bar{x}^S linearly dependent on smaller monomial coefficients in total order.
The space spanned by \bar{v}_S has $\log m$-rank concentration:

- Consider a monomial \bar{x}^S with support $> \log m$. It has $> m$ monomials strictly below it in lex-ordering.
- There must be linear dependence between coefficients associated with these lower monomials.
- Define a total ordering on monomials by fixing an arbitrary order between variables.
- Take a linear dependence equation for lower monomial coefficients, identify the largest monomial in total order, and multiply the equation with coefficient of a monomial such that the largest monomial becomes \bar{x}^S.
- This makes coefficient of \bar{x}^S linearly dependent on smaller monomial coefficients in total order.
The space spanned by \bar{v}_S has log m-rank concentration:

- Consider a monomial \bar{x}^S with support $> \log m$. It has $> m$ monomials strictly below it in lex-ordering.
- There must be linear dependence between coefficients associated with these lower monomials.
- Define a total ordering on monomials by fixing an arbitrary order between variables.
- Take a linear dependence equation for lower monomial coefficients, identify the largest monomial in total order, and multiply the equation with coefficient of a monomial such that the largest monomial becomes \bar{x}^S.
- This makes coefficient of \bar{x}^S linearly dependent on smaller monomial coefficients in total order.
Rank Concentration Based Algorithm

- The algorithm is now simple: for all subsets of $\log m$ variables, set the remaining variables to zero, and test if the resulting polynomial is zero on $d^{\log m}$ distinct values.
- This gives a $d^{O(\log d)}$-time black-box algorithm.
- In certain situations, there may not be rank concentration to begin with.
- So first apply a transformation on variables that yields rank concentration.
- For certain other restrictions of 3-PIT, the following transformation works:
 \[x_i \mapsto x_i + t^{d_i} \]
 for small d_i's.
The algorithm is now simple: for all subsets of $\log m$ variables, set the remaining variables to zero, and test if the resulting polynomial is zero on $d^{\log m}$ distinct values.

This gives a $d^{O(\log d)}$-time black-box algorithm.

In certain situations, there may not be rank concentration to begin with.

So first apply a transformation on variables that yields rank concentration.

For certain other restrictions of 3-PIT, the following transformation works:

$$x_i \mapsto x_i + t^{d_i}$$

for small d_i's.
The algorithm is now simple: for all subsets of $\log m$ variables, set the remaining variables to zero, and test if the resulting polynomial is zero on $d^{\log m}$ distinct values.

This gives a $d^{O(\log d)}$-time black-box algorithm.

In certain situations, there may not be rank concentration to begin with.

So first apply a transformation on variables that yields rank concentration.

For certain other restrictions of 3-PIT, the following transformation works:

$$x_i \mapsto x_i + t^{d_i}$$

for small d_i's.
Rank Concentration Based Algorithm

- The algorithm is now simple: for all subsets of $\log m$ variables, set the remaining variables to zero, and test if the resulting polynomial is zero on $d^{\log m}$ distinct values.
- This gives a $d^{O(\log d)}$-time black-box algorithm.
- In certain situations, there may not be rank concentration to begin with.
- So first apply a transformation on variables that yields rank concentration.
- For certain other restrictions of 3-PIT, the following transformation works:

 $$x_i \mapsto x_i + t^{d_i}$$

 for small d_i's.