ALGRABRAIC COMPLEXITY THEORY

Manindra Agrawal

IIT Kanpur

Symposium on Learning, Algorithms and Complexity, I1ISc Bangalore
2015

MANINDRA AGRAWAL (IIT KANPUR) ALGEBRAIC COMPLEXITY SLAC 2015 1/73



OVERVIEW

@ CompuTaTION OVER RINGS
@ Arithmetic Circuit Model
@ Generalizing Arithmetic Circuits

© Crasses P AND NP

© DePTH REDUCTION

@ StaTUS OF LOWER BOUNDS

@ PorLyNOMIAL IDENTITY TESTING

@ LPIT AND LOWER BOUNDS

@ ALGORITHMS FOR 2-PIT anD 3-PIT

MANINDRA AGRAWAL (IIT KANPUR) ALGEBRAIC COMPLEXITY SLAC 2015

2/ 73



OUTLINE

@ CompuTaTION OVER RINGS
@ Arithmetic Circuit Model
@ Generalizing Arithmetic Circuits

MANINDRA AGRAWAL (IIT KANPUR) ALGEBRAIC COMPLEXITY



COMPUTATION WITHOUT BITS

@ An algorithm, in general, can use individual bits of the input in very
complex ways. In particular, making execution decisions based on the
values of a bit.
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COMPUTATION WITHOUT BITS

@ An algorithm, in general, can use individual bits of the input in very

complex ways. In particular, making execution decisions based on the
values of a bit.

@ Certain algorithms, however, use the individual bits in a much simpler
way.

e Example: matrix multiplication. For [cj] = [ajj] - [bjj], we have:

n—1
Cij = E a,-kbkj.
k=0
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COMPUTATION WITHOUT BITS

@ An algorithm, in general, can use individual bits of the input in very
complex ways. In particular, making execution decisions based on the
values of a bit.

@ Certain algorithms, however, use the individual bits in a much simpler
way.

e Example: matrix multiplication. For [cj] = [ajj] - [bjj], we have:

n—1
Cij = E a,-kbkj.
k=0

o If we assume operations + and x as primitives, and the input being a
sequence of numbers denoting entries of matrices, then the algorithm
does not need to access bit values.
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COMPUTATION WITHOUT BITS

@ We can formalize such computations as follows:
» Let R be a ring with operations + and x.
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COMPUTATION WITHOUT BITS

@ We can formalize such computations as follows:

» Let R be a ring with operations + and x.
» Let the input be variables xq, x, ..., x,.

» An algorithm applies a sequence of ring operations on the input
variables and constants from R.
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COMPUTATION WITHOUT BITS

@ We can formalize such computations as follows:

Let R be a ring with operations + and x.

Let the input be variables xi, x», ..., X,.

An algorithm applies a sequence of ring operations on the input
variables and constants from R.

The output is a polynomial in R[xi, X2, . .., Xp]-

v vy

>
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COMPUTATION WITHOUT BITS

@ We can formalize such computations as follows:

» Let R be a ring with operations + and x.

» Let the input be variables xq, x, ..., x,.

» An algorithm applies a sequence of ring operations on the input
variables and constants from R.

» The output is a polynomial in R[xy, X, . .., X,].

@ This is called arithmetic circuit model.
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AN EXAMPLE

output = (ux + vy)? + (vx — uy)? — (u® + v2) - (x> + y?)
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ARITHMETIC CIRCUIT FAMILIES

@ As in the boolean settings, arithmetic circuit model is a non-uniform
model of computation.
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ARITHMETIC CIRCUIT FAMILIES

@ As in the boolean settings, arithmetic circuit model is a non-uniform
model of computation.

@ For each problem, one has, therefore, an infinite family of circuits
computing its solution.
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POWER OF THE MODEL

@ The model proposed by [Valiant 1979].
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@ The model proposed by [Valiant 1979].
@ It can compute all of the following operations:
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POWER OF THE MODEL

@ The model proposed by [Valiant 1979].
@ It can compute all of the following operations:

» Matrix operations: addition, multiplication, determinant, inverse,
characteristic polynomial, permanent
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POWER OF THE MODEL

@ The model proposed by [Valiant 1979].
@ It can compute all of the following operations:

» Matrix operations: addition, multiplication, determinant, inverse,
characteristic polynomial, permanent
» Polynomial operations: addition, multiplication

MANINDRA AGRAWAL (IIT KANPUR) ALGEBRAIC COMPLEXITY SLAC 2015 9 /73



POWER OF THE MODEL

@ The model proposed by [Valiant 1979].
@ It can compute all of the following operations:

» Matrix operations: addition, multiplication, determinant, inverse,
characteristic polynomial, permanent

» Polynomial operations: addition, multiplication

» Multivariate polynomial factorization when the polynomial is fixed
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ARITHMETIC COMPLEXITY

Crucial parameters associated with an arithmetic circuit are:

@ Input length: number of input variables. Notice that the size of
individual variables is not counted!
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ARITHMETIC COMPLEXITY

Crucial parameters associated with an arithmetic circuit are:

@ Input length: number of input variables. Notice that the size of
individual variables is not counted!

@ Size: equals the number of operations in the circuit (measured as a
function of input length).
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ARITHMETIC COMPLEXITY

Crucial parameters associated with an arithmetic circuit are:
@ Input length: number of input variables. Notice that the size of
individual variables is not counted!

@ Size: equals the number of operations in the circuit (measured as a
function of input length).

@ Depth: equals the length of the longest path from a variable to
output of the circuit.
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ARITHMETIC COMPLEXITY

Crucial parameters associated with an arithmetic circuit are:
@ Input length: number of input variables. Notice that the size of
individual variables is not counted!

@ Size: equals the number of operations in the circuit (measured as a
function of input length).

@ Depth: equals the length of the longest path from a variable to
output of the circuit.

@ Degree: equals the formal degree of circuit defined inductively as: 1
for input variables, max for addition gates, and sum for multiplication

gates.
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ARITHMETIC COMPLEXITY

Crucial parameters associated with an arithmetic circuit are:

@ Input length: number of input variables. Notice that the size of
individual variables is not counted!

@ Size: equals the number of operations in the circuit (measured as a
function of input length).

@ Depth: equals the length of the longest path from a variable to
output of the circuit.

@ Degree: equals the formal degree of circuit defined inductively as: 1
for input variables, max for addition gates, and sum for multiplication
gates.

@ Fanin: equals the largest number of inputs to a gate in the circuit.
We allow arbitrary fanin.
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CIRCUIT PARAMETERS

SIZE =16 DEPTH =4 DEGREE =4 FANIN =3
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OUTLINE

@ CompuTaTION OVER RINGS

@ Generalizing Arithmetic Circuits
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EXTENSION WITH ZERO-TEST

@ Many other algebraic operations cannot be computed in arithmetic
circuit model: solving system of linear equations, rank of a matrix,
gcd of polynomials, primality testing ...
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EXTENSION WITH ZERO-TEST

@ Many other algebraic operations cannot be computed in arithmetic
circuit model: solving system of linear equations, rank of a matrix,
gcd of polynomials, primality testing ...

@ Generalize the model by including another operation: zero-test.

» This is a branching operation: check if the input is zero; if yes do A
else do B.
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EXTENSION WITH ZERO-TEST

@ Many other algebraic operations cannot be computed in arithmetic
circuit model: solving system of linear equations, rank of a matrix,
gcd of polynomials, primality testing ...

@ Generalize the model by including another operation: zero-test.

» This is a branching operation: check if the input is zero; if yes do A
else do B.

@ All the above operations can be computed in the new model.
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BSS MODEL

@ The generalized model can still not compute simple functions, e.g.,
"Is x < y?"
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BSS MODEL

@ The generalized model can still not compute simple functions, e.g.,
"Is x < y?"

@ [Blum-Shub-Smale 1989] replaced zero-test with < operator.
» The operator makes sense only in rings with a total ordering, e.g., Z,

Q, R.
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BSS MODEL

@ The generalized model can still not compute simple functions, e.g.,
"Is x < y?"
@ [Blum-Shub-Smale 1989] replaced zero-test with < operator.
» The operator makes sense only in rings with a total ordering, e.g., Z,
Q, R.
@ They showed that the model, for R = Z or QQ restores access to bits,
and is therefore equivalent to the standard boolean model.
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BSS MODEL

@ The generalized model can still not compute simple functions, e.g.,
"ls x < y?"
@ [Blum-Shub-Smale 1989] replaced zero-test with < operator.

» The operator makes sense only in rings with a total ordering, e.g., Z,
Q, R.
@ They showed that the model, for R = Z or QQ restores access to bits,
and is therefore equivalent to the standard boolean model.

@ For R =R, they developed a new theory of complexity.
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BSS MODEL

@ The generalized model can still not compute simple functions, e.g.,
"ls x < y?"
@ [Blum-Shub-Smale 1989] replaced zero-test with < operator.

» The operator makes sense only in rings with a total ordering, e.g., Z,
Q R.
@ They showed that the model, for R = Z or QQ restores access to bits,
and is therefore equivalent to the standard boolean model.

For R = R, they developed a new theory of complexity.

@ We will not consider this model any further.
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OUTLINE

© Crasses P AND NP
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THE CLASS P

@ For both the models, the class P can be defined in an analogous way
to boolean settings: all problems that can be solved by a circuit
family of polynomial size.
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THE CLASS P

@ For both the models, the class P can be defined in an analogous way
to boolean settings: all problems that can be solved by a circuit
family of polynomial size.

@ In the arithmetic circuit model, a problem is simply a family of
polynomials, typically parameterized by the number of variables, or
degree, or both:
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THE CLASS P

@ For both the models, the class P can be defined in an analogous way
to boolean settings: all problems that can be solved by a circuit
family of polynomial size.

@ In the arithmetic circuit model, a problem is simply a family of
polynomials, typically parameterized by the number of variables, or
degree, or both:

» Chebyshev polynomials

by degree,

MANINDRA AGRAWAL (IIT KANPUR) ALGEBRAIC COMPLEXITY SLAC 2015 16 / 73




THE CLASS P

@ For both the models, the class P can be defined in an analogous way
to boolean settings: all problems that can be solved by a circuit
family of polynomial size.

@ In the arithmetic circuit model, a problem is simply a family of
polynomials, typically parameterized by the number of variables, or
degree, or both:

» Chebyshev polynomials

@2l g
Td(X) = Z (2/() (X2 — 1)kXd72k
k=0

by degree,
» Determinant polynomial by number of variables, and
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THE CLASS P

@ For both the models, the class P can be defined in an analogous way
to boolean settings: all problems that can be solved by a circuit
family of polynomial size.

@ In the arithmetic circuit model, a problem is simply a family of
polynomials, typically parameterized by the number of variables, or

degree, or both:
» Chebyshev polynomials

@2l g
Td(X) = Z (2/{) (X2 — 1)kXd72k
k=0

by degree,
» Determinant polynomial by number of variables, and
» Elementary symmetric polynomials

Sa(Xx1, X0, ..y Xp) = Z ij,

IC[1,n],|1|=d jEI

by both degree and number of variables.
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EXAMPLES

@ In the arithmetic circuit model, the following problems are in P:
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EXAMPLES

@ In the arithmetic circuit model, the following problems are in P:

» Matrix operations: addition, multiplication, determinant, inverse,
characteristic polynomial
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EXAMPLES

@ In the arithmetic circuit model, the following problems are in P:
» Matrix operations: addition, multiplication, determinant, inverse,
characteristic polynomial
» Polynomial operations: addition, multiplication, elementary symmetric
polynomials
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EXAMPLES

@ In the arithmetic circuit model, the following problems are in P:
» Matrix operations: addition, multiplication, determinant, inverse,
characteristic polynomial
» Polynomial operations: addition, multiplication, elementary symmetric
polynomials
» Multivariate polynomial factorization when the polynomial is fixed
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EXAMPLES

@ In the arithmetic circuit model, the following problems are in P:

» Matrix operations: addition, multiplication, determinant, inverse,
characteristic polynomial

» Polynomial operations: addition, multiplication, elementary symmetric
polynomials

» Multivariate polynomial factorization when the polynomial is fixed

> In the arithmetic circuits with zero-test model, the following problems
are also in P: solving a system of linear equations, rank of a matrix,
gcd of polynomials, primality testing.
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A Poor DEFINITION OF NP

@ Analogous definition of NP to the boolean settings fails.
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A Poor DEFINITION OF NP

@ Analogous definition of NP to the boolean settings fails.
o Consider arithmetic circuit model, where each computation results in
a polynomial, over R = C.

e Say polynomial family Pp(x1,...,x,) is in NP if there exists another
polynomial family Qpym+1(x1, .-\ Xn V1, ¥m,Z) in P such that:
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A Poor DEFINITION OF NP

@ Analogous definition of NP to the boolean settings fails.

o Consider arithmetic circuit model, where each computation results in
a polynomial, over R = C.

e Say polynomial family Pp(x1,...,x,) is in NP if there exists another
polynomial family Qpym+1(x1, .-\ Xn V1, ¥m,Z) in P such that:
» m=n%D, and
» Pp(aq,...,an) = iff there exists (1, ..., B, with

Qn+m+1(a1; .. 'aamﬂla cee 7ﬁm77) =0.

MANINDRA AGRAWAL (IIT KANPUR) ALGEBRAIC COMPLEXITY SLAC 2015 18 / 73



A Poor DEFINITION OF NP

@ By definition, Quimr1(a1,. .-, an, Y1,y Ym,2z) = 0iff z = 1.
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A Poor DEFINITION OF NP

@ By definition, Quimr1(a1,. .-, an, Y1,y Ym,2z) = 0iff z = 1.
@ Therefore,

Qn+m+1(a17' <y Ony Y1y e ,ym,Z) =9- (Z _7)t7

t>0.
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A Poor DEFINITION OF NP

@ By definition, Quimr1(a1,. .-, an, Y1,y Ym,2z) = 0iff z = 1.
@ Therefore,

Qn+m+1(al7 sy Oy Y1, e a_ymaz) =0- (Z - fy)tv

t>0.

@ Since this is true for all a1, ..., a,, we can reset Qpimt1 to
Qnimt1(ai,...,an,0,...,0,2).
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A BETTER DEFINITION OF NP

THE CLASS NP [VALIANT 1979]

Polynomial family {P,} is in NP if there exists a family {P,+,} € P such
that m = n°(), and for every n:

Pn(X]_,...,Xn): Z Z Qn-i—m(xla-"7Xn7y17"')ym)‘

»1€{0,1}  yme{0,1}

@ Here 0 and 1 are identities of R.

@ The definition can be easily generalized to arithmetic circuit with
zero-test model.
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EXAMPLES

@ All problems in P,
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@ All problems in P,

@ Permanent family,
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EXAMPLES

@ All problems in P,
@ Permanent family,

@ Jones polynomials: representing invariants of knots,
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EXAMPLES

All problems in P,
Permanent family,

Jones polynomials: representing invariants of knots,

Tutte polynomials:

Te(x,y) = Z(X — )kAKE) (), Y KAFHAI-IV]
ACE

where G = (V, E) is an undirected graph and k(A) is the number of
connected components in the subgraph (V, A).
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NP-cOMPLETE PROBLEMS

THEOREM [VALIENT 1979]

Computing permanent family is complete for NP in arithmetic circuit
model: for every polynomial family {Q,} in NP, for every n, Q, can be

expressed as permanent of a n®(})-size matrix with variable and constant
entries.
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NP-cOMPLETE PROBLEMS

THEOREM [VALIENT 1979]

Computing permanent family is complete for NP in arithmetic circuit
model: for every polynomial family {Q,} in NP, for every n, Q, can be

expressed as permanent of a n®(})-size matrix with variable and constant
entries.

@ Several other polynomial families are also NP-complete: Jones
polynomials, Tutte polynomials, matching polynomial etc.
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Is P # NP?

@ The classes P and NP of arithmetic circuit model roughly correspond
to computing the boolean classes #L and #P respectively:
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Is P # NP?

@ The classes P and NP of arithmetic circuit model roughly correspond
to computing the boolean classes #L and #P respectively:

» Permanent is complete for #P in boolean model and for NP in
arithmetic circuit model.
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Is P # NP?

@ The classes P and NP of arithmetic circuit model roughly correspond
to computing the boolean classes #L and #P respectively:
» Permanent is complete for #P in boolean model and for NP in

arithmetic circuit model.
» Determinant is complete for #L in boolean model and for P under
quasi-polynomial size reductions in arithmetic circuit model.
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Is P #NP?

@ The classes P and NP of arithmetic circuit model roughly correspond
to computing the boolean classes #L and #P respectively:
» Permanent is complete for #P in boolean model and for NP in
arithmetic circuit model.
» Determinant is complete for #L in boolean model and for P under
quasi-polynomial size reductions in arithmetic circuit model.

@ Therefore, it is a weaker question that P # NP in boolean model: If
P # NP in boolean model then P £ NP in arithmetic circuit model.
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Is P # NP?

@ Even for arithmetic circuit model, proving P % NP has been very
challenging, and has remained a hypothesis.

AWAL (IIT KANPUR) ALGEBRAIC COMPLEXITY SLAC 2015 24 /73



Is P # NP?

@ Even for arithmetic circuit model, proving P % NP has been very
challenging, and has remained a hypothesis.

@ Henceforth, we restrict ourselves to the arithmetic model of
computation.

MANINDRA AGRAWAL (IIT KANPUR) ALGEBRAIC COMPLEXITY SLAC 2015 24 /73




Is P # NP?

@ Even for arithmetic circuit model, proving P % NP has been very
challenging, and has remained a hypothesis.

@ Henceforth, we restrict ourselves to the arithmetic model of
computation.

@ For arithmetic circuit model, the classes P and NP are called VP and
VNP: named after Valiant.
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Is P # NP?

@ Even for arithmetic circuit model, proving P % NP has been very
challenging, and has remained a hypothesis.

@ Henceforth, we restrict ourselves to the arithmetic model of
computation.

@ For arithmetic circuit model, the classes P and NP are called VP and
VNP: named after Valiant.

@ Over the years, this problem has become one of the most active areas
of research in complexity theory.
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OUTLINE

@ DepTH REDUCTION
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REDUCING DEPTH TO O(log d)

THEOREM (VALIANT-SKYUM-BERKOWITZ-RACKOFF, 1983)

If polynomial P(x1,...,x,) of degree d is computable by an arithmetic
circuit of size s > n, then it can also be computed by an arithmetic circuit

of size s°() whose depth is O(log d) and fanin of multiplication gates is
two.

Another construction was given by [Allender-Jiao-Mahajan-Vinay 1994]. J
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REDUCING DEPTH TO 4

THEOREM (A-VINAY 2008)

If polynomial P(x1,...,xn) of degree d is computable by an arithmetic
circuit of size s = 2°(9+d12 %) " then it can also be computed by an
arithmetic circuit of size s°(1) of depth 4.

Extended by [Koiran 2012, Tavenas 2013)]. |
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Proor

Let the polynomial P(xi,...,x,) be computed by an arithmetic circuit C
of size t = 20(d+dlogq),
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Proor

Let the polynomial P(xi,...,x,) be computed by an arithmetic circuit C
of size t = 20(d+dlogq),

o [Allender-Jiao-Mahajan-Vinay 1994] shows that C can be transformed
to a circuit D of degree d, size t%(Y) and depth O(log d) with
multiplication gates of fanin two.
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Proor

Let the polynomial P(xi,...,x,) be computed by an arithmetic circuit C
of size t = 20(d+dlogq),

o [Allender-Jiao-Mahajan-Vinay 1994] shows that C can be transformed
to a circuit D of degree d, size t9(1) and depth O(log d) with
multiplication gates of fanin two.

@ We modify this transformation slightly to obtain a circuit D of degree

d, size t9) and depth < 2log d with multiplication gates of fanin
<6.

@ Further, the circuit D consists of alternating layers of addition and
multiplication gates.
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Proor

Let the polynomial P(xi,...,x,) be computed by an arithmetic circuit C
of size t = 20(d+dlogq),

o [Allender-Jiao-Mahajan-Vinay 1994] shows that C can be transformed
to a circuit D of degree d, size t9(1) and depth O(log d) with
multiplication gates of fanin two.

@ We modify this transformation slightly to obtain a circuit D of degree

d, size t9) and depth < 2log d with multiplication gates of fanin
<6.

@ Further, the circuit D consists of alternating layers of addition and
multiplication gates.

@ We now describe the construction of the circuit D.
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CONSTRUCTION OF D: SETUP

@ Make the circuit C layered with alternating layers of addition and
multiplication gates.
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CONSTRUCTION OF D: SETUP

@ Make the circuit C layered with alternating layers of addition and
multiplication gates.

@ Make fanin of every multiplication gate two.
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CONSTRUCTION OF D: SETUP

@ Make the circuit C layered with alternating layers of addition and
multiplication gates.

@ Make fanin of every multiplication gate two.

@ Rearrange children of multiplication gates so that degree of the right
child is greater than or equal to the degree of the left child.
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CONSTRUCTION OF D: PROOF TREES

A proof tree rooted at gate g of circuit C is a subcircuit of C obtained as
follows:

@ Start with the subcircuit of C that has gate g at the top and
computes the polynomial at gate g.
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CONSTRUCTION OF D: PROOF TREES

A proof tree rooted at gate g of circuit C is a subcircuit of C obtained as
follows:

@ Start with the subcircuit of C that has gate g at the top and
computes the polynomial at gate g.

@ For every +-gate in the subcircuit, retain only one input to the gate
deleting the remaining input lines.

@ For every x-gate in the subcircuit, retain both the inputs to the gate.
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CONSTRUCTION OF D: PROOF TREES

A proof tree rooted at gate g of circuit C is a subcircuit of C obtained as
follows:

@ Start with the subcircuit of C that has gate g at the top and
computes the polynomial at gate g.

@ For every +-gate in the subcircuit, retain only one input to the gate
deleting the remaining input lines.

@ For every x-gate in the subcircuit, retain both the inputs to the gate.

A proof tree rooted at gate g computes a monomial and the polynomial at
g is the sum over monomials computed by all proof tress rooted at g.
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CONSTRUCTION OF D: DEFINING INTERMEDIATE
POLYNOMIALS

e For every input variable x;, let [x;] stand for the polynomial x;.
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CONSTRUCTION OF D: DEFINING INTERMEDIATE
POLYNOMIALS

e For every input variable x;, let [x;] stand for the polynomial x;.

@ For every gate g of C, let [g] stand for polynomial computed at gate
g.

MANINDRA AGRAWAL (IIT KANPUR) ALGEBRAIC COMPLEXITY SLAC 2015 31/ 73



CONSTRUCTION OF D: DEFINING INTERMEDIATE
POLYNOMIALS

e For every input variable x;, let [x;] stand for the polynomial x;.

@ For every gate g of C, let [g] stand for polynomial computed at gate
g.

@ For every pair of gates g and h of C, let [g, h| be the polynomial:

lg.h = > m(T.h)

T

where T runs over all proof trees rooted at g and m(T, h) is the
monomial computed by proof tree T when gate h is replaced by 1 if
gate h occurs in the rightmopst path of T, m(T, h) is 0 otherwise.
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CONSTRUCTION OF D: DEFINING INTERMEDIATE
POLYNOMIALS

e For every input variable x;, let [x;] stand for the polynomial x;.

@ For every gate g of C, let [g] stand for polynomial computed at gate
g.

@ For every pair of gates g and h of C, let [g, h| be the polynomial:

lg.h = > m(T.h)

T

where T runs over all proof trees rooted at g and m(T, h) is the
monomial computed by proof tree T when gate h is replaced by 1 if
gate h occurs in the rightmopst path of T, m(T, h) is 0 otherwise.

o It follows that

[e] = Z[gaxi][xi]'
i=1
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CONSTRUCTION OF D: DEFINING GATES [g, h]

o If g is a +-gate with children g1, ..., g, then

t

g h] = lgi h]-

i=1
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CONSTRUCTION OF D: DEFINING GATES [g, h]

o If g is a +-gate with children g1, ..., g, then

t

.M = > lei. .

i=1

o Let g be a x-gate with children g, (left child) and gg (right child).

@ A rightmost path from g to h is a path from g to h in the circuit
obtained from C by deleting input line from left child of every x-gate.
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CONSTRUCTION OF D: DEFINING GATES [g, h]

o If g is a +-gate with children g1, ..., g, then

t

.M = > lei. .

i=1

o Let g be a x-gate with children g, (left child) and gg (right child).

@ A rightmost path from g to h is a path from g to h in the circuit
obtained from C by deleting input line from left child of every x-gate.

o If there are only +-gates on every rightmost path from g to h then

g h] = [gr]-
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CONSTRUCTION OF D: DEFINING [g, h]

@ Otherwise, there exists a #-gate p with children p; and pg in a
rightmost path from g to h such that

deg(p) > 3(deg(g) + deg(h)) > deg(pr).

deg(g) stands for degree of gate g )
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CONSTRUCTION OF D: DEFINING [g, h]

@ Otherwise, there exists a #-gate p with children p; and pg in a
rightmost path from g to h such that
deg(p) > 3(deg(g) + deg(h)) > deg(pr).

@ Then, we have:

lg. 1 = lg,pl-[pc] - [pr, H]
p

where the sum ranges over all gates p satisfying the above condition.

deg(g) stands for degree of gate g J
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CONSTRUCTION OF D: DEFINING [g, h]

P le. 1 lg.h =>_,lg. PllpllPr, h].

MANINDRA AGRAWAL (IIT KANPUR) ALGEBRAIC COMPLEXITY



CONSTRUCTION OF D: DEFINING [g, h]
P le. 1 lg.h =>_,lg. PllpllPr, h].

deg([g, h]) = deg(g) — deg(h) |
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CONSTRUCTION OF D: DEFINING [g, h]
lg.h =>_,lg. PllpllPr, h].

deg([g, h]) = deg(g) — deg(h) |

deg([g, p]) <
3(deg(g) — deg(h)) J
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CONSTRUCTION OF D: DEFINING [g, h]
lg.h =>_,lg. PllpllPr, h].

deg([g, h]) = deg(g) — deg(h) |

deg([pr, h] <
3(deg(g) — deg(h)) J
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CONSTRUCTION OF D: DEFINING [g, h]
P le. 1 lg.h =>_,lg. PllpllPr, h].

............ So.0@ deg(lg; h]) = deg(g) — deg(h) |

@ [pr. il deg([pL]) < deg(g) —deg(h) |
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CONSTRUCTION OF D: DEFINING [g, h]
lg.h =>_,lg. PllpllPr, h].

deg([g, h]) = deg(g) — deg(h) |

deg([p]) < deg(g) — deg(h) |

[pL] = Zi[PL,Xi][Xi]v
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CONSTRUCTION OF D: DEFINING [g, h]
lg.h =>_,lg. PllpllPr, h].

deg([g, h]) = deg(g) — deg(h) |

deg([pc]) < deg(g) — deg(h) |

[Pl = >2ilpe, xi][xil,
pL= Zj Pf_
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CONSTRUCTION OF D: DEFINING [g, h]
lg. hl = >_,lg: pllpL]lPr, hl.

deg([g, h]) = deg(g) — deg(h) |

deg([pc]) < deg(g) — deg(h) |
[l = > ilpe, xilxl,

pL = Zj Pf_ _

[Py xil = 32 qlPLs dllacllar, xil.
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CONSTRUCTION OF D: DEFINING [g, h]
lg. hl = >_,lg: pllpL]lPr, hl.

,,,,,,,,,,, S.0@ deg(lg, h]) = deg(g) — deg(h) |

deg([pc]) < deg(g) — deg(h) |

. [p] = >2ilpes xillxil,
44444444444444444 a ' x; PL.: Zj Pf_ _
rrrrrrrrrrrrrrrrrr [P, xil = 22 glp1. dllacllar, xi]-

@ lar,xi]

deg([p], q] < % deg(pr) )

MANINDRA AGRAWAL (IIT KANPUR) ALGEBRAIC COMPLEXITY SLAC 2015 34 /73




CONSTRUCTION OF D: DEFINING [g, h]
lg. hl = >_,lg: pllpL]lPr, hl.

deg([g, h]) = deg(g) — deg(h) |

deg([pc]) < deg(g) — deg(h) |
[l = > ilpe, xilxl,

pL = Zj Pf_ _

[Py xil = 32qlpLs allacllar, xil-

deg([p], q] < % deg(pr) J

deg([qu] < 2 deg(p1) J
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CONSTRUCTION OF D: DEFINING [g, h]
lg. hl = >_,lg: pllpL]lPr, hl.

deg([g, h]) = deg(g) — deg(h) |

deg([pc]) < deg(g) — deg(h) |
[pc] = > ilpe, xillxil,

pL = Zj Pf_ _

[Py, xil = > glP1- gllacllar, xi].

deg([p], q] < } deg(pv)

J
deg([q] < 3 deg(pyL) J
J

deg([qr. x;] < & deg(p1)
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CONSTRUCTION OF D: DEFINING [g, h]

Flatten the subcircuit to write
[g. ] as:

SRR

le, Pl g lacl [ar,xi] [xi] [P, h] & pllpL: gllacllar, xil[xillpr, Al

with degree of each of the six
polynomials in the product
bounded by 1 deg([g, h]).
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CONSTRUCTION OF D

@ By adding dummy +-gates and merging adjacent +-gates, it can be
ensured that the circuit has alternating layers of +- and x-gates.

o The size of resulting circuit is t9(1).
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CONSTRUCTION OF D

@ By adding dummy +-gates and merging adjacent +-gates, it can be
ensured that the circuit has alternating layers of +- and x-gates.

o The size of resulting circuit is t9(1).

@ Since the degree of children of a *-gate is at most half of the degree
of the gate, the depth of the circuit D is < 2logd.
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REPLACING D

@ We now replace D by a depth four circuit.
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REPLACING D

@ We now replace D by a depth four circuit.

@ The circuit is defined by cutting D in two halves and replacing each
half by a depth two circuit.

MANINDRA AGRAWAL (IIT KANPUR) ALGEBRAIC COMPLEXITY SLAC 2015 37 /73



CuTTING D

d+dlog ¢

@ Let ¢ be any function such that ¢ < ozt

and ¢ = w(1).

o Letu= %Iog6€.
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CuTTING D

d
@ Let ¢ be any function such that ¢ < % and ¢ = w(1).

o Letu= % logg £.
@ Cut D into two halves with top half consisting of u layers of x-gates
with the bottom layer being of x-gates.
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CuTtTING D

d+d|og%
logt

@ Let ¢ be any function such that ¢ < and ¢ = w(1).

o Let u= % logg £.

@ Cut D into two halves with top half consisting of u layers of x-gates
with the bottom layer being of x-gates.

o Let g1, g, ..., gk be the output gates of the bottom layer.
@ Let the polynomial computed by gate g; be Pi(x1, x2,. .., Xp).

@ The top layer can be viewed as computing a polynomial in k new
variables; let this be Po(y1,y2, ..., Yk)-
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CuTtTING D

d+d|og%
logt

@ Let ¢ be any function such that ¢ < and ¢ = w(1).

o Let u= % logg £.

@ Cut D into two halves with top half consisting of u layers of x-gates
with the bottom layer being of x-gates.

o Let g1, g, ..., gk be the output gates of the bottom layer.
@ Let the polynomial computed by gate g; be Pi(x1, x2,. .., Xp).

@ The top layer can be viewed as computing a polynomial in k new
variables; let this be Po(y1,y2, ..., Yk)-

@ Then:

P(x1,...,xn) = Po(P1(x1,...,xn), P2(x1,. .., Xn), -, P(Xx1, ..., %n))-
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THE CIRCUIT E

@ A direct counting shows that each P;, 0 < j < k, can be replaced by
a depth two circuit of size 2°(

d+dlog )
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THE CIRCUIT E

@ A direct counting shows that each P;, 0 < j < k, can be replaced by
a depth two circuit of size 20(d+dlogq),

o Since k = 2°(9+d1og3) the resulting depth four circuit, E, is of size
2o(d+d|og§).
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THE CIRCUIT E

@ A direct counting shows that each P;, 0 < j < k, can be replaced by
a depth two circuit of size 20(d+dlogq),

o Since k = 2°(9+d1og3) the resulting depth four circuit, E, is of size
2o(d+d|og§).

@ The fanin of second layer of %-gates in E is at most 6 = v/¢ which is
any small function in w(1).

o The fanin of bottom layer of +-gates in E is at most & = o(d).
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REDUCING DEPTH TO 3

THEOREM (GUPTA-KAMATH-KAYAL-SAPTHARISHI 2013)

If polynomial P(x1,...,xn) of degree d is computable by an arithmetic
circuit of size s = 2°(9+d183) then it can also be computed by an
arithmetic circuit of size s°(1) of depth 3 if the underlying field has
characteristic zero or large (= Q(logs)).

MANINDRA AGRAWAL (IIT KANPUR)
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PROOF OUTLINE

@ Replace each [] layer of a depth four circuit by > A D" layers
resulting ina > A Y A circuit using [Fischer 1994]:

HXJ =D DR GRS S

F2reern€{—~1,1} j=2

where wt(r) = [{j | rj = —1}|. This works for char = 0 or > n.
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PROOF OUTLINE

@ Replace each [] layer of a depth four circuit by > A D" layers
resulting ina > A Y A circuit using [Fischer 1994]:

HXJ =D SR ORI

ry..,rme{—1,1} j=2
where wt(r) = [{j | rj = —1}|. This works for char = 0 or > n.
@ Replace AY A by Y T[> resulting in " []>_ circuit using [Saxena

2008]:

8
(alxlﬁl—l—agx&—i- +apxP)? = degree d coefficient of d!- H %%’ 2.
j=1

This works for char =0 or > d.
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OUTLINE

@ StaTUus oF LOWER BOUNDS
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LOWER BOUNDS ON PERMANENT AND DETERMINANT

[JERRUM-SNIR 1982] Any monotone circuit family computing permanent
is of exponential size.

@ Monotone circuits are circuits with no negative constant.
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LOWER BOUNDS ON PERMANENT AND DETERMINANT

[JERRUM-SNIR 1982] Any monotone circuit family computing permanent
is of exponential size.

@ Monotone circuits are circuits with no negative constant.

[SHPILKA-WIGDERSON 1999] Any depth three circuit family computing
permanent (or even determinant) over Q is of size Q(n?).
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LOWER BOUNDS ON PERMANENT AND DETERMINANT

[JERRUM-SNIR 1982] Any monotone circuit family computing permanent
is of exponential size.

@ Monotone circuits are circuits with no negative constant.

[SHPILKA-WIGDERSON 1999] Any depth three circuit family computing
permanent (or even determinant) over Q is of size Q(n?).

[GRIGORIEV-RAZBOROV 2000] Any depth three circuit family
computing permanent or determinant over a finite field is of
exponential size.
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LOWER BOUNDS ON PERMANENT AND DETERMINANT

[RAz 2004] Any multilinear formula family computing permanent or

determinant is of size n(logn)

@ Formulas are circuits with outdegree one.
@ Multilinear formulas are formulas in which every gate
computes a multilinear polynomial.
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LOWER BOUNDS ON PERMANENT AND DETERMINANT

[RAz 2004] Any multilinear formula family computing permanent or
Q(log n)

determinant is of size n )
@ Formulas are circuits with outdegree one.
@ Multilinear formulas are formulas in which every gate
computes a multilinear polynomial.
[KAYAL-SAHA 2014] Any depth three circuit family of bottom fanin < r
computing a polynomial family in VP of degree d in n

) ) . ) . d
variables over fields of charecteristic zero, is of size n(%).
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LOWER BOUNDS ON PERMANENT AND DETERMINANT

[RAz 2004] Any multilinear formula family computing permanent or
determinant is of size n®(log ),
@ Formulas are circuits with outdegree one.
@ Multilinear formulas are formulas in which every gate

computes a multilinear polynomial.

[KAYAL-SAHA 2014] Any depth three circuit family of bottom fanin < r
computing a polynomial family in VP of degree d in n

) ) . ) . d
variables over fields of charecteristic zero, is of size n(%).

[KAYAL-LIMAYE-SAHA-SRINIVASAN 2014] 29(vV7198") |ower bound on
homogeneous depth four circuits computing permanent over
characteristic zero.

A circuit is homogeneous if every internediate polynomial is homogeneous.J
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OUTLINE

@ PorLyNOMIAL IDENTITY TESTING
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DEFINITIONS

PIT

Given an arithmetic circuit of size s over ring R, test if the polynomial
computed by the circuit is non-zero.
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DEFINITIONS

PIT

Given an arithmetic circuit of size s over ring R, test if the polynomial
computed by the circuit is non-zero.

Low DEeGREE PIT (LPIT)

Given an arithmetic circuit of size s over ring R computing a polynomial of
degree < s, test if the polynomial computed by the circuit is non-zero.
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AN EXAMPLE

Is (ux + vy)? + (vx — uy)? — (v? + v?) - (x* + y?) # 07 [NO!]
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APPLICATIONS

BIPARTITE MATCHING : for graph G = (U, V, E), check if

€1,1X11 -+ €1.nXin
det : : # 0

€n1Xn1 *°  €nnXn:n

over any field, where E = [e; j|]. An example of LPIT.
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APPLICATIONS

BIPARTITE MATCHING : for graph G = (U, V, E), check if

€1,1X11 -+ €1.nXin
det : : #0

€n1Xn1 *°  €nnXn:n

over any field, where E = [e; j|. An example of LPIT.
PRIMALITY TESTING : for number n, check if

(x+y)" =x"+y"

over ring Z,[x,y]/(x" — 1,y® — 1) for suitable r and s, both
Iogo(l) n.
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COMPLEXITY OF PIT

A number of randomized polynomial time algorithms are known for the
problem.
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COMPLEXITY OF PIT

A number of randomized polynomial time algorithms are known for the
problem.

@ The simplest one is by [Schwartz, Zippel 1979]: Substitute random
values from a small subset of R (using a small extension of R if
required) for each variable, evaluate the circuit, and output
NON-ZERO iff the result is a non-zero number.
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COMPLEXITY OF PIT

A number of randomized polynomial time algorithms are known for the
problem.

@ The simplest one is by [Schwartz, Zippel 1979]: Substitute random
values from a small subset of R (using a small extension of R if
required) for each variable, evaluate the circuit, and output
NON-ZERO iff the result is a non-zero number.

@ Others are [Chen-Kao 1997], [Lewis-Vadhan 1998], [A-Biswas 1999],
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DETERMINISTIC ALGORITHM FOR PIT

OPEN QUESTION
Is there a deterministic polynomial time algorithm for PIT? J
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DETERMINISTIC ALGORITHM FOR PIT

OPEN QUESTION
Is there a deterministic polynomial time algorithm for PIT? J

@ Long-standing open problem.
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DETERMINISTIC ALGORITHM FOR PIT

OPEN QQUESTION

Is there a deterministic polynomial time algorithm for PIT?

@ Long-standing open problem.

@ A positive answer also yields a lower bound.

MANINDRA AGRAWAL (IIT KANPUR) ALGEBRAIC COMPLEXITY SLAC 2015
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TwoO TYPES OF DETERMINISTIC ALGORITHMS FOR
PIT

WHITE Box

A white-box time t(n) algorithm for PIT is a deterministic algorithm
solving the problem in time at most t(n).
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TwoO TYPES OF DETERMINISTIC ALGORITHMS FOR
PIT

WHITE Box

A white-box time t(n) algorithm for PIT is a deterministic algorithm
solving the problem in time at most t(n).

BLACK Box

A black-box time t(n) algorithm for PIT is a deterministic algorithm
running in time t(n) that, given an arithmetic circuit, determines if it

computes non-zero polynomial with access only to input-output lines and
size of the circuit.
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OUTLINE

@ LPIT AND LOWER BOUNDS
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LPIT AnNnD LOWER BOUNDS [

THEOREM (KABANETS-IMPAGLIAZZO 2003)

If there exists a white-box polynomial-time algorithm for LPIT then NEXP
requires superpolynomial size arithmetic circuits.
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LPIT AnNnD LOWER BOUNDS [

PROOF.

@ Assume NEXP has polynomial-size arithmetic circuits and PIT has a
polynomial-time algorithm.
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LPIT AnNnD LOWER BOUNDS [

PROOF.

@ Assume NEXP has polynomial-size arithmetic circuits and PIT has a
polynomial-time algorithm.

@ Construct an NP machine to compute permanent that guesses the
circuit for the permanent and verifies it recursively using PIT:
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LPIT AnNnD LOWER BOUNDS [

PROOF.

@ Assume NEXP has polynomial-size arithmetic circuits and PIT has a
polynomial-time algorithm.

@ Construct an NP machine to compute permanent that guesses the
circuit for the permanent and verifies it recursively using PIT:
» If C(X1,1,--sX1,n- -+, Xn1,- .-, Xnn) IS Circuit for permanent of n x n
matrices, then we can extract from it circuit C; for permanent of j x j
matrices for j < n.
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LPIT AnNnD LOWER BOUNDS [

PROOF.

@ Assume NEXP has polynomial-size arithmetic circuits and PIT has a
polynomial-time algorithm.

@ Construct an NP machine to compute permanent that guesses the
circuit for the permanent and verifies it recursively using PIT:

» If C(X1,1,--sX1,n- -+, Xn1,- .-, Xnn) IS Circuit for permanent of n x n
matrices, then we can extract from it circuit C; for permanent of j x j
matrices for j < n.

» Using LPIT, verify the correctness of C:

G(x)=x11G1(x) + -+ x1,;G1(X)

where Xx; drops first row and ith column.
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LPIT AnNnD LOWER BOUNDS [

PROOF.

@ Assume NEXP has polynomial-size arithmetic circuits and PIT has a
polynomial-time algorithm.

@ Construct an NP machine to compute permanent that guesses the
circuit for the permanent and verifies it recursively using PIT:

» If C(X1,1,--sX1,n- -+, Xn1,- .-, Xnn) IS Circuit for permanent of n x n
matrices, then we can extract from it circuit C; for permanent of j x j
matrices for j < n.

» Using LPIT, verify the correctness of C:

G(x)=x11G1(x) + -+ x1,;G1(X)

where Xx; drops first row and ith column.

@ This implies #P is in NP. Since NEXP = #P by assumption, we get
NEXP = NP contradicting time hierarchy theorem.
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LPIT AxnD LOWER BOuUNDS II

THEOREM (HEINTZ-SCHNORR 1980, A 2005)

If there exist a black-box polynomial-time algorithm for LPIT then E
requires exponential size arithmetic circuits.
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LPIT AND LOWER BOUNDS 11
PROOF.
o Let A be a black-box polynomial-time algorithm for LPIT.

@ For a circuit of size s on n variables, A will evaluate it on a sequence
of inputs and accept iff any of the outputs in non-zero.
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LPIT AxnD LOWER BOuUNDS II
PROOF.

o Let A be a black-box polynomial-time algorithm for LPIT.

@ For a circuit of size s on n variables, A will evaluate it on a sequence
of inputs and accept iff any of the outputs in non-zero.

o Let these inputs be (av1.1,...,01.0), ..., (@ 1,- .., Q¢n) with

t = s90(1),

o Let m= [log(t+1)] = O(logs).
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LPIT AND LOWER BOUNDS 11
PROOF.
o Let A be a black-box polynomial-time algorithm for LPIT.
@ For a circuit of size s on n variables, A will evaluate it on a sequence
of inputs and accept iff any of the outputs in non-zero.
o Let these inputs be (av1.1,...,01.0), ..., (@ 1,- .., Q¢n) with
t =0,
o Let m= [log(t+1)] = O(logs).
@ Define polynomial rp, as:

Fm(X1, X2, oy Xm) = Z Ccs Hx,-.

SC[l,m] €S

o Coefficients cs € F satisfy:

Z CSHCVj,i:O

SC[1,m] €S

forevery 1 <j <'t.
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LPIT AxnD LOWER BOuUNDS II

@ A non-zero rp, always exists since it has > t + 1 coefficients that
satisfy t homogeneous linear equations.
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@ A non-zero rp, always exists since it has > t + 1 coefficients that
satisfy t homogeneous linear equations.

@ Polynomial r,;, can be computed by exponential size arithmetic
circuits.
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LPIT AxnD LOWER BOuUNDS II

@ A non-zero rp, always exists since it has > t + 1 coefficients that
satisfy t homogeneous linear equations.

@ Polynomial r,;, can be computed by exponential size arithmetic
circuits.

o Circuit complexity of rp, is more than s = 2%,

MANINDRA AGRAWAL (IIT KANPUR) ALGEBRAIC COMPLEXITY SLAC 2015 57 /73



Fixep DeErTH PIT

DEPTH d PIT

d-PIT is the problem to decide if a given arithmetic circuit of depth d

(alternating sums and products with top gate being sum) computes a
non-zero polynomial.
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Fixep DeErTH PIT

DEPTH d PIT

d-PIT is the problem to decide if a given arithmetic circuit of depth d

(alternating sums and products with top gate being sum) computes a
non-zero polynomial.

d-PIT is a restriction of LPIT.
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3-PI'T AND LOWER BOUNDS

THEOREM (GUPTA-KAMATH-KAYAL-SAPTHARISHI 2013)

If there exist a polynomial-time black-box algorithm for 3-PIT then E
requires exponential size arithmetic circuits if the underlying field has
characteristic zero or large (= Q(log s)).
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3-PI'T AND LOWER BOUNDS

THEOREM (GUPTA-KAMATH-KAYAL-SAPTHARISHI 2013)

If there exist a polynomial-time black-box algorithm for 3-PIT then E
requires exponential size arithmetic circuits if the underlying field has
characteristic zero or large (= Q(log s)).

THEOREM

If there exists a white-box polynomial-time algorithm for 3-PIT then
NEXP requires superpolynomial size arithmetic circuits.
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OUTLINE

@ ALGORITHMS FOR 2-PIT AND 3-PIT
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2-PIT

THEOREM (FOLKLORE)
There exists a polynomial-time black-box algorithm for 2-PIT. J
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2-PIT

PROOF.

e A > ] circuit computes a sparse polynomial.

o Let C be the given ) [] circuit of size s computing a polynomial of
degree < d.
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2-PIT

PROOF.

e A > ] circuit computes a sparse polynomial.

o Let C be the given ) [] circuit of size s computing a polynomial of
degree < d.

@ One of the substitutions
i—1 n—1
(X1 ey Xiy ooy Xn) = (s .- ,y(d+1) (mod r), .. ,y(d‘H) (mod ’)),
1 < r < 52, will ensure that all terms of the polynomial remain
distinct.
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3-PI'T witH BOUNDED ToprP FANIN

Sequence of solutions for 3-PIT with top sum gate of fanin k:

2
[DVIR-SHPILKA 2005] White-box 2(0g)" time algorithm.
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3-PI'T witH BOUNDED ToprP FANIN

Sequence of solutions for 3-PIT with top sum gate of fanin k:

2
[DVIR-SHPILKA 2005] White-box 2(0g)" time algorithm.
[KAYAL-SAXENA 2006] White-box s9(K) time algorithm.
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3-PI'T witH BOUNDED ToprP FANIN

Sequence of solutions for 3-PIT with top sum gate of fanin k:
2

[DVIR-SHPILKA 2005] White-box 2(0g)" time algorithm.

[KAYAL-SAXENA 2006] White-box s9(K) time algorithm.

[KARNIN-SHPILKA 2008] Black-box s0(°8%) time algorithm.
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3-PI'T witH BOUNDED ToprP FANIN

Sequence of solutions for 3-PIT with top sum gate of fanin k:
2

[DVIR-SHPILKA 2005] White-box 2(0g)" time algorithm.

[KAYAL-SAXENA 2006] White-box s9(K) time algorithm.

[KARNIN-SHPILKA 2008] Black-box s0(°8%) time algorithm.

[SAXENA-SESHADRI 2009] Black-box sk'108 s time algorithm.
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3-PI'T witH BOUNDED ToprP FANIN

Sequence of solutions for 3-PIT with top sum gate of fanin k:
2

[DVIR-SHPILKA 2005] White-box 2(0g)" time algorithm.

[KAYAL-SAXENA 2006] White-box s9(K) time algorithm.

[KARNIN-SHPILKA 2008] Black-box s0(°8%) time algorithm.

[SAXENA-SESHADRI 2009] Black-box sk'108 s time algorithm.

[

KAYAL-SARAF 2009] Black-box sk time algorithm over characteristic
zero fields.
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3-PI'T witH BOUNDED ToprP FANIN

Sequence of solutions for 3-PIT with top sum gate of fanin k:
2
[DVIR-SHPILKA 2005] White-box 2(089)“" time algorithm.
[KAYAL-SAXENA 2006] White-box s9(K) time algorithm.
[KARNIN-SHPILKA 2008] Black-box s0(°8%) time algorithm.
SAXENA-SESHADRI 2009] Black-box s¥* 985 time algorithm.
g
[

KAYAL-SARAF 2009] Black-box sk time algorithm over characteristic
zero fields.

[SAXENA-SESHADRI 2011] Black-box s9(K) time algorithm.
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3-PI'T witH BOUNDED ToprP FANIN

Sequence of solutions for 3-PIT with top sum gate of fanin k:

2
DVIR-SHPILKA 2005] White-box 2(0g)" time algorithm.
KAYAL-SAXENA 2006] White-box s9(K) time algorithm.

[
[
[KARNIN-SHPILKA 2008] Black-box s0(°€“%) time algorithm.
[SAXENA-SESHADRI 2009] Black-box sk'108 s time algorithm.
[

KAYAL-SARAF 2009] Black-box sk time algorithm over characteristic
zero fields.

[SAXENA-SESHADRI 2011] Black-box s9(K) time algorithm.

[A-SAHA-SAPTHARISHI-SAXENA 2012] Black-box s9() time algorithm
for zero or large characteristic fields.
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JACOBIAN BASED ALGORITHM

oletP=K T, Ti= [[;=; Li; be the given circuit with
n
Lij = aijo+ 2y @ijexe
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JACOBIAN BASED ALGORITHM

oletP=K T, Ti= [[;=; Li; be the given circuit with
Lij = aijo+ -y ijeXe-
@ Assume that P = 0 and T;'s are algebraically independent:

» There is no polynomial Q(y1, ya, ..., yx) such that
Q(Ty, Tay..., Tx) = 0.

MANINDRA AGRAWAL (IIT KANPUR) ALGEBRAIC COMPLEXITY SLAC 2015

64 / 73



JACOBIAN BASED ALGORITHM

oletP=K T, Ti= [[;=; Li; be the given circuit with
Lij = aijo~+ > p_1 aijexe
@ Assume that P = 0 and T;'s are algebraically independent:
» There is no polynomial Q(y1, ya, ..., yx) such that
Q(Ty, Tay..., Tx) = 0.
o For characteristic zero or > s¥: Ty, ..., T are algebraically
independent iff J( Ty, To,..., Tk) has full rank, where

Iy Oy .. On
8X1 sz aXn
J()’la)/27~--,Yk): .
Oy Oy ... Ok
8)(1 aXl aXn
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JACOBIAN BASED ALGORITHM

@ Therefore, J(T1,..., Tx) has rank k.

MANINDRA AGRAWAL (IIT KANPUR) ALGEBRAIC COMPLEXITY



JACOBIAN BASED ALGORITHM

@ Therefore, J(T1,..

@ We have:

T, Toyoo ., Ty) =

MANINDRA AGR

/AL (IIT KANPUR)

., Tk) has rank k.

-8T1 BTl
o0x1 0xo
oT, 0Ty
-8X1 8X1
i d a1
1 Zj:l Ly
d Ok
_Tk Zj:l Ly

ALGEBRAIC COMPLEXITY

oTy
Oxn

0Ty
Oxn

K
Tk Z.i:l Lyj

d Q1jn

RXkjin
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JACOBIAN BASED ALGORITHM

@ Assume, wlog, that columns corresponding to variables x1, xo, ..., Xk
have rank k.
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JACOBIAN BASED ALGORITHM

@ Assume, wlog, that columns corresponding to variables x3, x2, ..

have rank k.
o Let
d o151
Tl Zj:l L]
P = :
d o
Ty Zj:l [
Z{/ A1,.1
k Jj=1 Ly
- 10|
i=1 d o1
Zj:l Ly
k
i=1

where R is a sparse rational function.
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d a1k
1 Zj:l L

d = Okjk
T Zj:l Lk

Z{/ Q1,j.k
J=1 Ly

Z(_/ Qk,j,k
J=1 Ly
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JACOBIAN BASED ALGORITHM

e Since Pis a product of sparse polynomials and rational functions, the
set of substitutions as used for 2-PIT will ensure that P remains

non-zero under one of them.
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JACOBIAN BASED ALGORITHM

e Since P is a product of sparse polynomials and rational functions, the
set of substitutions as used for 2-PIT will ensure that P remains
non-zero under one of them.

@ For this substitution, the Jacobian has full rank and therefore the
circuit output remains non-zero.
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3-PIT FOR DIAGONAL CIRCUITS

DiacoNAL CIRCUITS
Circuits where each multiplication gate is a powering gate. J
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3-PIT FOR DIAGONAL CIRCUITS

DiacoNAL CIRCUITS
Circuits where each multiplication gate is a powering gate. J

THEOREM (FORBES-SHPILKA 2012, A-SAHA-SAXENA 2013) J

There exists a s°(°€%)_time black-box algorithm for diagonal 3-PIT.
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RANK CONCENTRATION BASED ALGORITHM

o Let P=Y5 T, T; = LY be the given circuit with
Li=ajo+ Y 51 iexe.
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RANK CONCENTRATION BASED ALGORITHM

o Let P=Y5 T, T; = LY be the given circuit with
Li = o+ D 51 iexe.
@ The polynomial can be rewritten as:

P=1(lo+Uxs+ -+ Unxn),

where 1y = [Oé17g e Oék7g].
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RANK CONCENTRATION BASED ALGORITHM

o Now consider the following polynomial with vectors over F¥ as
coefficients:

Q = (fo+ bixy+ -+ Unxn)?

- Z vsx>

5€[0.d]"

where S = (di, da, ..., d,), Vs is Hadamard product of d @'s, and
)?5 = H?:l Xidf'
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RANK CONCENTRATION BASED ALGORITHM

o Now consider the following polynomial with vectors over F¥ as
coefficients:

Q = (fo+ bixy+ -+ Unxn)?

- Z vsx>

S€[0,d]”
where S = (di, da, ..., d,), Vs is Hadamard product of d @'s, and
S _ 1IN d;
x> =Ilie %
o Consider the vectors vs € Fk.

@ Let the dimension of the space spanned by these vectors be m < k.
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RANK CONCENTRATION BASED ALGORITHM

@ (-rank concentration is the property that vs of support ¢ (i.e., S with
only ¢ non-zero d;'s) span this space.
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RANK CONCENTRATION BASED ALGORITHM

@ (-rank concentration is the property that vs of support ¢ (i.e., S with
only ¢ non-zero d;'s) span this space.

o If there is /-rank concentration, the PIT can be solved by setting all
but ¢ x's to zero and evaluating the resulting polynomial.
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RANK CONCENTRATION BASED ALGORITHM

@ The space spanned by vs has log m-rank concentration:

» Consider a monomial X° with support > log m. It has > m monomials
strictly below it in lex-ordering.
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RANK CONCENTRATION BASED ALGORITHM

@ The space spanned by vs has log m-rank concentration:
» Consider a monomial X° with support > log m. It has > m monomials
strictly below it in lex-ordering.
» There must be linear dependence between coefficients associated with
these lower monomials.

MANINDRA AGRAWAL (IIT KANPUR) ALGEBRAIC COMPLEXITY SLAC 2015 72 /73



RANK CONCENTRATION BASED ALGORITHM

@ The space spanned by vs has log m-rank concentration:

» Consider a monomial X° with support > log m. It has > m monomials
strictly below it in lex-ordering.

» There must be linear dependence between coefficients associated with
these lower monomials.

» Define a total ordering on monomials by fixing an arbitrary order
between variables.
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RANK CONCENTRATION BASED ALGORITHM

@ The space spanned by vs has log m-rank concentration:

» Consider a monomial X° with support > log m. It has > m monomials
strictly below it in lex-ordering.

» There must be linear dependence between coefficients associated with
these lower monomials.

» Define a total ordering on monomials by fixing an arbitrary order
between variables.

» Take a linear dependence equation for lower monomial coefficients,
identify the largest monomial in total order, and multiply the equation
with coefficient of a monomial such that the largest monomial becomes
x°.
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RANK CONCENTRATION BASED ALGORITHM

@ The space spanned by vs has log m-rank concentration:

» Consider a monomial X° with support > log m. It has > m monomials
strictly below it in lex-ordering.

» There must be linear dependence between coefficients associated with
these lower monomials.

» Define a total ordering on monomials by fixing an arbitrary order
between variables.

» Take a linear dependence equation for lower monomial coefficients,
identify the largest monomial in total order, and multiply the equation
with coefficient of a monomial such that the largest monomial becomes
x°.

» This makes coefficient of X° linearly dependent on smaller monomial
coefficients in total order.
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RANK CONCENTRATION BASED ALGORITHM

@ The algorithm is now simple: for all subsets of log m variables, set the
remaining variables to zero, and test if the resulting polynomial is
zero on d'°8™ distinct values.
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RANK CONCENTRATION BASED ALGORITHM

@ The algorithm is now simple: for all subsets of log m variables, set the
remaining variables to zero, and test if the resulting polynomial is
zero on d'°8™ distinct values.

o This gives a d9(°29)_time black-box algorithm.
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RANK CONCENTRATION BASED ALGORITHM

@ The algorithm is now simple: for all subsets of log m variables, set the
remaining variables to zero, and test if the resulting polynomial is
zero on d'°8™ distinct values.

o This gives a d9(°29)_time black-box algorithm.

@ In certain situations, there may not be rank concentration to begin
with.

@ So first apply a transformation on variables that yields rank
concentration.
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RANK CONCENTRATION BASED ALGORITHM

@ The algorithm is now simple: for all subsets of log m variables, set the
remaining variables to zero, and test if the resulting polynomial is
zero on d'°8™ distinct values.

o This gives a d9(°29)_time black-box algorithm.

@ In certain situations, there may not be rank concentration to begin
with.

@ So first apply a transformation on variables that yields rank
concentration.

@ For certain other restrictions of 3-PIT, the following transformation
works:
Xj — Xj + £

for small d;’s.
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