

# The Surprising Power of Belief Propagation

Elchanan Mossel

January 8, 2015

# Why does BP Works??

- ▶ ML algorithm **work well** in practice.
- ▶ But **Why?**
- ▶ Understand linear algebra algorithms (spectral, singular values ...) well.
- ▶ Non-linear algorithms?
- ▶ Especially when they do better **even in practice!** than all algorithm we know.
- ▶ Today: Belief Propagation.

# Graphical Models and Belief Propagation

- ▶ **Graphical Models** or Markov Random Fields are one of the most popular ways to prescribe high dimensional distributions.
- ▶ Encoding based on *conditional independence statements*.
- ▶ Based on a probabilistic model on graph / *graphical model*.

# Graphical Models and Belief Propagation

- ▶ **Graphical Models** or Markov Random Fields are one of the most popular ways to prescribe high dimensional distributions.
- ▶ Encoding based on *conditional independence statements*.
- ▶ Based on a probabilistic model on graph / *graphical model*.
- ▶ (Pairwise) Graphical model is based on a graph  $G = (V, E)$  and a distribution

$$p((x_v : v \in V)) = Z^{-1} \prod_{(u,v) \in E} \psi_{(u,v)}(x_u, x_v), \quad x \in A^V$$

# Graphical Models and Belief Propagation

- ▶ **Graphical Models** or Markov Random Fields are one of the most popular ways to prescribe high dimensional distributions.
- ▶ Encoding based on *conditional independence statements*.
- ▶ Based on a probabilistic model on graph / *graphical model*.
- ▶ (Pairwise) Graphical model is based on a graph  $G = (V, E)$  and a distribution

$$p((x_v : v \in V)) = Z^{-1} \prod_{(u,v) \in E} \psi_{(u,v)}(x_u, x_v), \quad x \in A^V$$

- ▶ Goal of Belief Propagation: Compute **marginals**:

$$p(x_v = a)??$$

## Example: Graph coloring

- ▶ Let  $p$  be the uniform  $q$ -coloring model of a graph.

## Example: Graph coloring

- ▶ Let  $p$  be the uniform  $q$ -coloring model of a graph.
- ▶ Can write:

$$p((x_v : v \in V)) = Z^{-1} \prod_{(u,v) \in E} \psi(x_u, x_v), \quad x \in [q]^V$$

where  $\psi(c, d) = 1 - \delta_{c,d}$ .

## Example: Graph coloring

- ▶ Let  $p$  be the uniform  $q$ -coloring model of a graph.
- ▶ Can write:

$$p((x_v : v \in V)) = Z^{-1} \prod_{(u,v) \in E} \psi(x_u, x_v), \quad x \in [q]^V$$

where  $\psi(c, d) = 1 - \delta_{c,d}$ .

- ▶

$$p(x_v = c) ??$$

# Belief Propagation on Trees



## Belief Propagation on Trees

- ▶ On trees:  $O(n^2)$  time to get all marginals using recursion.

## Belief Propagation on Trees

- ▶ On trees:  $O(n^2)$  time to get all marginals using recursion.
- ▶ More sophisticated *Dynamic Programming* is done in  $O(n \times \text{diameter})$ . "**Belief Propagation**".

## Belief Propagation on Trees

- ▶ On trees:  $O(n^2)$  time to get all marginals using recursion.
- ▶ More sophisticated *Dynamic Programming* is done in  $O(n \times \text{diameter})$ . "**Belief Propagation**".
- ▶ Belief Propagation **Variables**:  $(\eta_{v \rightarrow u}^a : (v, u) \in E, a \in A)$ .

# Belief Propagation on Trees

- ▶ On trees:  $O(n^2)$  time to get all marginals using recursion.
- ▶ More sophisticated *Dynamic Programming* is done in  $O(n \times \text{diameter})$ . "**Belief Propagation**".
- ▶ Belief Propagation **Variables**:  $(\eta_{v \rightarrow u}^a : (v, u) \in E, a \in A)$ .
- ▶ **Updates**:

$$\eta_{v \rightarrow u}^a(t+1) := Z^{-1} \prod_{w \neq u, (w, v) \in E} \sum_b \eta_{w \rightarrow v}^b(t) \psi_{(v, u)}(b, a)$$

# Belief Propagation on Trees

- ▶ On trees:  $O(n^2)$  time to get all marginals using recursion.
- ▶ More sophisticated *Dynamic Programming* is done in  $O(n \times \text{diameter})$ . "**Belief Propagation**".
- ▶ Belief Propagation **Variables**:  $(\eta_{v \rightarrow u}^a : (v, u) \in E, a \in A)$ .
- ▶ **Updates**:

$$\eta_{v \rightarrow u}^a(t+1) := Z^{-1} \prod_{w \neq u, (w, v) \in E} \sum_b \eta_{w \rightarrow v}^b(t) \psi_{(v, u)}(b, a)$$

- ▶ Marginal of  $x_u$  is approximated by

$$p(x_u = a) := Z^{-1} \prod_{(v, u) \in E} \eta_{v \rightarrow u}^a(\infty)$$

# Belief Propagation on Trees

- ▶ On trees:  $O(n^2)$  time to get all marginals using recursion.
- ▶ More sophisticated *Dynamic Programming* is done in  $O(n \times \text{diameter})$ . "**Belief Propagation**".
- ▶ Belief Propagation **Variables**:  $(\eta_{v \rightarrow u}^a : (v, u) \in E, a \in A)$ .
- ▶ **Updates**:

$$\eta_{v \rightarrow u}^a(t+1) := Z^{-1} \prod_{w \neq u, (w, v) \in E} \sum_b \eta_{w \rightarrow v}^b(t) \psi_{(v, u)}(b, a)$$

- ▶ Marginal of  $x_u$  is approximated by

$$p(x_u = a) := Z^{-1} \prod_{(v, u) \in E} \eta_{v \rightarrow u}^a(\infty)$$

- ▶ Example of 3-coloring:

$$\eta_{v \rightarrow w}^a = \frac{\prod_{u \in N(v) \setminus w} (1 - \eta_{u \rightarrow v}^a)}{\sum_{b=1}^3 \prod_{u \in N(v) \setminus w} (1 - \eta_{u \rightarrow v}^b)}$$

# Belief Propagation on (tree-like) graphs

- ▶ BP is very extensively applied to general graphs.

# Belief Propagation on (tree-like) graphs

- ▶ BP is very extensively applied to general graphs.
- ▶ Not clear what it gives!

# Belief Propagation on (tree-like) graphs

- ▶ BP is very extensively applied to general graphs.
- ▶ Not clear what it gives!
- ▶ Mathematical formulation:

# Belief Propagation on (tree-like) graphs

- ▶ BP is very extensively applied to general graphs.
- ▶ Not clear what it gives!
- ▶ Mathematical formulation:
- ▶ Given a graph  $G$ , let  $T(G)$  be the **universal cover** of  $G$ .
- ▶  $T(G)$  is the **tree of non-backtracking** walks on  $G$ .

# Belief Propagation on (tree-like) graphs

- ▶ BP is very extensively applied to general graphs.
- ▶ Not clear what it gives!
- ▶ Mathematical formulation:
- ▶ Given a graph  $G$ , let  $T(G)$  be the **universal cover** of  $G$ .
- ▶  $T(G)$  is the **tree** of **non-backtracking** walks on  $G$ .
- ▶ To compute marginal  $x_v$  at  $G$ , compute  $x_v$  at  $T(G)$ .

# Belief Propagation on (tree-like) graphs

- ▶ BP is very extensively applied to general graphs.
- ▶ Not clear what it gives!
- ▶ Mathematical formulation:
- ▶ Given a graph  $G$ , let  $T(G)$  be the **universal cover** of  $G$ .
- ▶  $T(G)$  is the **tree** of **non-backtracking** walks on  $G$ .
- ▶ To compute marginal  $x_v$  at  $G$ , compute  $x_v$  at  $T(G)$ .
- ▶ If  $G$  is not a forest then  $T(G)$  is infinite ...

# BP on tree-like graphs and local information



# Treelike graphs, local information and LDPC

- ▶ Beautiful Work in Coding Theory - LDPC

# Treelike graphs, local information and LDPC

- ▶ Beautiful Work in Coding Theory - LDPC
- ▶ If  $G = (V, E)$ 
  1. locally tree-like and
  2. can initialize  $\eta_{u \rightarrow v}$  so that they are correlated to  $x_v$

Then BP converges to correct correct values!

# Treelike graphs, local information and LDPC

- ▶ Beautiful Work in Coding Theory - LDPC
- ▶ If  $G = (V, E)$ 
  1. locally tree-like and
  2. can initialize  $\eta_{u \rightarrow v}$  so that they are correlated to  $x_v$

Then BP converges to correct correct values!
- ▶ Luby-Mitzenmacher-Shokrollahi-88
- ▶ Spielman-00, Richardson-Shokrollahi-Urbanke-01.

# Treelike graphs, local information and LDPC

- ▶ Beautiful Work in Coding Theory - LDPC
- ▶ If  $G = (V, E)$ 
  1. locally tree-like and
  2. can initialize  $\eta_{u \rightarrow v}$  so that they are correlated to  $x_v$

Then BP converges to correct correct values!
- ▶ Luby-Mitzenmacher-Shokrollahi-88
- ▶ (Why) Does BP work in other cases?
- ▶ In particular, how does it work when there is no way to initialize the messages?

# BP on tree-like graphs without local information



???

# The Block Model

- ▶ Random graph  $G = (V, E)$  on  $n$  nodes.
- ▶ Half blue / half red.

# The Block Model

- ▶ Random graph  $G = (V, E)$  on  $n$  nodes.
- ▶ Half blue / half red.
- ▶ Two nodes of the same color are connected with probability  $a/n$ .
- ▶ Two nodes with different colors are connected with probability  $b/n$ .

# The Block Model

- ▶ Random graph  $G = (V, E)$  on  $n$  nodes.
- ▶ Half blue / half red.
- ▶ Two nodes of the same color are connected with probability  $a/n$ .
- ▶ Two nodes with different colors are connected with probability  $b/n$ .
- ▶ Inference: find which nodes are red and which are blue ?

# The Block Model

- ▶ Random graph  $G = (V, E)$  on  $n$  nodes.
- ▶ Half blue / half red.
- ▶ Two nodes of the same color are connected with probability  $a/n$ .
- ▶ Two nodes with different colors are connected with probability  $b/n$ .
- ▶ Inference: find which nodes are red and which are blue ?
- ▶ Conjecture (Decelle, Krzakala, Moore and Zdeborova): "Belief-Propagation" is the **optimal algorithm**.
- ▶ and ... possible to do better than random iff  $(a - b)^2 > 2(a + b)$ .

# The Block Model Conjecture

- ▶ Conjecture (Decelle, Krzakala, Moore and Zdeborova):  
"Belief-Propagation" is the optimal algorithm.

# The Block Model Conjecture

- ▶ Conjecture (Decelle, Krzakala, Moore and Zdeborova):  
"Belief-Propagation" is the **optimal algorithm**.
- ▶ Works amazingly well both on real and simulated data.

# The Block Model Conjecture

- ▶ Conjecture (Decelle, Krzakala, Moore and Zdeborova): "Belief-Propagation" is the **optimal algorithm**.
- ▶ Works amazingly well both on real and simulated data.
- ▶ Other algorithms we know do not work as well. In particular, completely fail when  $(a - b)^2 \sim 2(a + b)$ .

# The Block Model Conjecture

- ▶ Conjecture (Decelle, Krzakala, Moore and Zdeborova): "Belief-Propagation" is the **optimal algorithm**.
- ▶ Works amazingly well both on real and simulated data.
- ▶ Other algorithms we know do not work as well. In particular, completely fail when  $(a - b)^2 \sim 2(a + b)$ .
- ▶ Note: can only solve up to global flip.

# The Block Model Conjecture

- ▶ Conjecture (Decelle, Krzakala, Moore and Zdeborova): "Belief-Propagation" is the **optimal algorithm**.
- ▶ Works amazingly well both on real and simulated data.
- ▶ Other algorithms we know do not work as well. In particular, completely fail when  $(a - b)^2 \sim 2(a + b)$ .
- ▶ Note: can only solve up to global flip.
- ▶ Note: graph is very sparse - cannot hope to recover clusters exactly.

# BP on tree-like graphs without local information



- ▶ Note: initializing correctly  $(1/2, 1/2)$  is a fixed point.
- ▶ Instead initialize randomly ??

# The Block Model in pictures

A sample from the model



# The Block Model in pictures

The data (one sample!)



# The Block Model in pictures

What we want to Infer



## The Conjecture is Correct

- ▶ **Thm 1** (M-Neeman-Sly 12): If  $(a - b)^2 \leq 2(a + b)$  the impossible to infer better than random.

## The Conjecture is Correct

- ▶ **Thm 1** (M-Neeman-Sly 12): If  $(a - b)^2 \leq 2(a + b)$  the impossible to infer better than random.
- ▶ **Thm 2** (M-Neeman-Sly, Massoulie 14): If  $(a - b)^2 > 2(a + b)$  then possible to detect (infer better than random)

## The Conjecture is Correct

- ▶ **Thm 1** (M-Neeman-Sly 12): If  $(a - b)^2 \leq 2(a + b)$  the impossible to infer better than random.
- ▶ **Thm 2** (M-Neeman-Sly, Massoulie 14): If  $(a - b)^2 > 2(a + b)$  then possible to detect (infer better than random)
- ▶ **Thm 3** (M-Neeman-Sly, 14): If  $(a - b)^2 > 100(a + b)$  then Belief Propagation is optimal for detection.

## The Conjecture is Correct

- ▶ **Thm 1** (M-Neeman-Sly 12): If  $(a - b)^2 \leq 2(a + b)$  the impossible to infer better than random.
- ▶ **Thm 2** (M-Neeman-Sly, Massoulie 14): If  $(a - b)^2 > 2(a + b)$  then possible to detect (infer better than random)
- ▶ **Thm 3** (M-Neeman-Sly, 14): If  $(a - b)^2 > 100(a + b)$  then Belief Propagation is optimal for detection.
- ▶ **Thm 4** (M-Neeman-Sly, 14): It's possible to recover all the nodes in the graph **if and only if** w.h.p. *for all* nodes  $v$ , the majority of the neighbors of  $v$  are in the same cluster as  $v$ .

## The Conjecture is Correct

- ▶ **Thm 1** (M-Neeman-Sly 12): If  $(a - b)^2 \leq 2(a + b)$  the impossible to infer better than random.
- ▶ **Thm 2** (M-Neeman-Sly, Massoulie 14): If  $(a - b)^2 > 2(a + b)$  then possible to detect (infer better than random)
- ▶ **Thm 3** (M-Neeman-Sly, 14): If  $(a - b)^2 > 100(a + b)$  then Belief Propagation is optimal for detection.
- ▶ **Thm 4** (M-Neeman-Sly, 14): It's possible to recover all the nodes in the graph **if and only if** w.h.p. *for all* nodes  $v$ , the majority of the neighbors of  $v$  are in the same cluster as  $v$ .
- ▶ Note: Thm 4 improves on a very long line of research in computer science and statistics including Boppana (87) Dyer and Frieze (89), Jerrum and Sorkin (89), Carson and Impagliazzo (01) and Condon and Karp (01).

## BP and a New Type of Random Matrix

- ▶ **Thm 2** If  $(a - b)^2 > 2(a + b)$  then possible to detect.

## BP and a New Type of Random Matrix

- ▶ **Thm 2** If  $(a - b)^2 > 2(a + b)$  then possible to detect.
- ▶ **Conj:** (Krzakala, Moore, M, Neeman, Sly, Zdebrovoa, Zhang 13): If  $A$  is the adjacency matrix, then w.h.p the second **eigenvector** of

$$N = \begin{pmatrix} 0 & D - I \\ -I & A \end{pmatrix}, \quad D = \text{diag}(d_{v_1}, \dots, d_{v_n}),$$

is correlated with the partition.

## BP and a New Type of Random Matrix

- ▶ **Thm 2** If  $(a - b)^2 > 2(a + b)$  then possible to detect.
- ▶ **Conj:** (Krzakala, Moore, M, Neeman, Sly, Zdebrovoa, Zhang 13): If  $A$  is the adjacency matrix, then w.h.p the second **eigenvector** of

$$N = \begin{pmatrix} 0 & D - I \\ -I & A \end{pmatrix}, \quad D = \text{diag}(d_{v_1}, \dots, d_{v_n}),$$

is correlated with the partition.

- ▶ No orthogonal structure!  $N$  is not symmetric or normal. Singular vector of  $N$  are useless.

## BP and a New Type of Random Matrix

- ▶ **Thm 2** If  $(a - b)^2 > 2(a + b)$  then possible to detect.
- ▶ **Conj:** (Krzakala, Moore, M, Neeman, Sly, Zdebrovoa, Zhang 13): If  $A$  is the adjacency matrix, then w.h.p the second **eigenvector** of

$$N = \begin{pmatrix} 0 & D - I \\ -I & A \end{pmatrix}, \quad D = \text{diag}(d_{v_1}, \dots, d_{v_n}),$$

is correlated with the partition.

- ▶ No orthogonal structure!  $N$  is not symmetric or normal. Singular vector of  $N$  are useless.
- ▶ KMMNSZZ established connections between  $N$  and Belief Propagation

## From BP to linear Algebra

- ▶ Coja-Oghlan-M-Vilenchik (09): to analyze BP with no local information **linearize it**.

# From BP to linear Algebra

- ▶ Coja-Oghlan-M-Vilenchik (09): to analyze BP with no local information **linearize it**.
- ▶ Linearization gives  $(n^2 - n) \times (n^2 - n)$  matrix.

# From BP to linear Algebra

- ▶ Coja-Oghlan-M-Vilenchik (09): to analyze BP with no local information **linearize it**.
- ▶ Linearization gives  $(n^2 - n) \times (n^2 - n)$  matrix.
- ▶ KMMNSZZ via Hashimoto 89 - get small matrix

$$N = \begin{pmatrix} 0 & D - I \\ -I & A \end{pmatrix}, \quad D = \text{diag}(d_{v_1}, \dots, d_{v_n}),$$

# From BP to linear Algebra

- ▶ Coja-Oghlan-M-Vilenchik (09): to analyze BP with no local information **linearize it**.
- ▶ Linearization gives  $(n^2 - n) \times (n^2 - n)$  matrix.
- ▶ KMMNSZZ via Hashimoto 89 - get small matrix

$$N = \begin{pmatrix} 0 & D - I \\ -I & A \end{pmatrix}, \quad D = \text{diag}(d_{v_1}, \dots, d_{v_n}),$$

- ▶ Study it and conjecture it's optimality.

# Zeta functions on graphs

1. Hashimoto-89: Introduced a graph analogue of Zeta functions of  $p$ -adic algebraic varieties:

$$Z(u, f) = \exp \left( \sum_{\ell=1}^{\infty} \sum_{C \in X_{\ell}} \frac{f(C)}{\ell} u^{\ell} \right),$$

where  $X_{\ell}$  = set of closed non backtracking loops of length  $\ell$  and  $f(C) = \prod_{e \in C} f(e)$ .

2. Proved that  $Z(f, u)$  is a rational function of  $u$ .
3. Asked: how much  $Z(f, u)$  is revealing about the graph ...

# The Spectrum of $N$



# The spectrum on real networks



# Performance on Real Networks

- ▶  $R = N$  .
- ▶  $L$  = normalized laplacian (random walk matrix).

| network name    | BP overlap    | sign of vector 2 of $\mathbf{R}$ | k-means of $\mathbf{R}$ | sign of vector 2 of $\mathbf{L}_{sym}$ | k-means of $\mathbf{L}_{sym}$ |
|-----------------|---------------|----------------------------------|-------------------------|----------------------------------------|-------------------------------|
| words           | *             | <b>0.9107</b>                    | 0.875                   | 0.5625                                 | 0.5714                        |
| political blogs | 0.5167        | 0.9313                           | 0.6383                  | <b>0.9542</b>                          | 0.9476                        |
| karate club     | 0.5588        | <b>1</b>                         | <b>1</b>                | 0.9706                                 | <b>1</b>                      |
| dolphin         | <b>0.9838</b> | 0.8710                           | 0.96774                 | 0.9677                                 | <b>0.9839</b>                 |
| brsmall         | *             | 0.6548                           | <b>0.69345</b>          | 0.6235                                 | 0.6687                        |
| brcorp          | *             | 0.6993                           | 0.72631                 | <b>0.7332</b>                          | 0.6993                        |
| adjnoun         | 0.5625        | 0.8125                           | <b>0.8214</b>           | 0.5446                                 | 0.5357                        |

## Two proofs avoiding the spectral conjecture

- ▶ **Thm 2** (M-Neeman-Sly, Massoulie 14): If  $(a - b)^2 > 2(a + b)$  then possible to detect.

## Two proofs avoiding the spectral conjecture

- ▶ **Thm 2** (M-Neeman-Sly, Massoulie 14): If  $(a - b)^2 > 2(a + b)$  then possible to detect.
- ▶ MNS: Let  $X^\ell(u, v) = \sum_{\Gamma} \prod_{e \in G} (1((u, v) \in G) - \frac{a+b}{2})$  where the sum is over all non backtracking walks of length  $\ell = C \log n$ .

## Two proofs avoiding the spectral conjecture

- ▶ **Thm 2** (M-Neeman-Sly, Massoulie 14): If  $(a - b)^2 > 2(a + b)$  then possible to detect.
- ▶ MNS: Let  $X^\ell(u, v) = \sum_{\Gamma} \prod_{e \in G} (1((u, v) \in G) - \frac{a+b}{2})$  where the sum is over all non backtracking walks of length  $\ell = C \log n$ .
- ▶ Show that  $X^\ell(u, v)$  is (typically) larger if  $u$  and  $v$  are in same cluster.

## Two proofs avoiding the spectral conjecture

- ▶ **Thm 2** (M-Neeman-Sly, Massoulie 14): If  $(a - b)^2 > 2(a + b)$  then possible to detect.
- ▶ MNS: Let  $X^\ell(u, v) = \sum_{\Gamma} \prod_{e \in G} (1((u, v) \in G) - \frac{a+b}{2})$  where the sum is over all non backtracking walks of length  $\ell = C \log n$ .
- ▶ Show that  $X^\ell(u, v)$  is (typically) larger if  $u$  and  $v$  are in same cluster.
- ▶ Massoulie: Define a **symmetric** matrix  $A_{u,v}$  = number of self-avoiding walks from  $u$  to  $v$  of length  $\varepsilon \log n$  and show second eigenvector is correlated with partition.

## Two proofs avoiding the spectral conjecture

- ▶ **Thm 2** (M-Neeman-Sly, Massoulie 14): If  $(a - b)^2 > 2(a + b)$  then possible to detect.
- ▶ MNS: Let  $X^\ell(u, v) = \sum_{\Gamma} \prod_{e \in G} (1((u, v) \in G) - \frac{a+b}{2})$  where the sum is over all non backtracking walks of length  $\ell = C \log n$ .
- ▶ Show that  $X^\ell(u, v)$  is (typically) larger if  $u$  and  $v$  are in same cluster.
- ▶ Massoulie: Define a **symmetric** matrix  $A_{u,v} =$  number of self-avoiding walks from  $u$  to  $v$  of length  $\varepsilon \log n$  and show second eigenvector is correlated with partition.
- ▶ Massoulie gets symmetric matrix. MNS - almost linear time.

## Future Research

- ▶ Other planted models: more than two clusters, unequal size etc.

## Future Research

- ▶ Other planted models: more than two clusters, unequal size etc.
- ▶ Typically expect computational threshold to be different than information threshold.

## Future Research

- ▶ Other planted models: more than two clusters, unequal size etc.
- ▶ Typically expect computational threshold to be different than information threshold.
- ▶ For example: hidden clique.

## Future Research

- ▶ Other planted models: more than two clusters, unequal size etc.
- ▶ Typically expect computational threshold to be different than information threshold.
- ▶ For example: hidden clique.
- ▶ More challenging: BP and Survey Propagation for satisfiability problems.

## Future Research

- ▶ Other planted models: more than two clusters, unequal size etc.
- ▶ Typically expect computational threshold to be different than information threshold.
- ▶ For example: hidden clique.
- ▶ More challenging: BP and Survey Propagation for satisfiability problems.
- ▶ How to let linear algebra algorithms utilize local information?

# A New Type of Phase Transition Question

- ▶ **Thm 1** (M-Neeman-Sly 12):  $f(a - b)^2 \leq 2(a + b)$  the impossible to infer better than random.
- ▶ **Thm 3** (M-Neeman-Sly, 14): If  $(a - b)^2 > 100(a + b)$  then Belief Propagation is optimal for detection.
- ▶ Proofs via phase transitions for broadcasting on trees.  
Thm 3 requires a new phase transition!

# Broadcasting on trees

Take a tree. Fix  $\epsilon \in (0, 1)$ .



# Broadcasting on trees

Take a tree. Fix  $\epsilon \in (0, 1)$ .

Color the root randomly.



# Broadcasting on trees

Take a tree. Fix  $\epsilon \in (0, 1)$ .

Color the root randomly.

For each child, copy the color with probability  $1 - \epsilon$ .

Otherwise, flip the color



# Broadcasting on trees

Take a tree. Fix  $\epsilon \in (0, 1)$ .

Color the root randomly.

For each child, copy the color with probability  $1 - \epsilon$ .

Otherwise, flip the color



# Broadcasting on trees

Take a tree. Fix  $\epsilon \in (0, 1)$ .

Color the root randomly.

For each child, copy the color with probability  $1 - \epsilon$ .

Otherwise, flip the color



# Broadcasting on trees

Take a tree. Fix  $\epsilon \in (0, 1)$ .

Color the root randomly.

For each child, copy the color with probability  $1 - \epsilon$ .

Otherwise, flip the color



Question: given the leaves, can we guess the color of the root?

# Broadcasting on trees

Take a tree. Fix  $\epsilon \in (0, 1)$ .

Color the root randomly.

For each child, copy the color with probability  $1 - \epsilon$ .

Otherwise, flip the color



Question: given the leaves, can we guess the color of the root?

Answer: iff  $(1 - 2\epsilon)^2 d > 1$

(where  $d$  is the *branching number* of the tree)

(... Evans, Kenyon, Peres, Schulman, 2000 ... )

## Broadcasting on trees

Take a tree. Fix  $\epsilon \in (0, 1)$ .

Color the root randomly.

For each child, copy the color with probability  $1 - \epsilon$ .

Otherwise, flip the color



Question: given the leaves, can we guess the color of the root?

Answer: iff  $(1 - 2\epsilon)^2 d > 1$

(where  $d$  is the *branching number* of the tree)

(... Evans, Kenyon, Peres, Schulman, 2000 ... )

$\implies$  Thm 1 with  $\varepsilon = a/(a+b)$ ,  $d = (a+b)/2$ .

## Back to the original problem



# Back to the original problem



## Robust tree reconstruction

To Analyze BP with good initial messages, we need to understand the following process

# Robust tree reconstruction

To Analyze BP with good initial messages, we need to understand the following process

Take a tree and color the root randomly.

For each child, copy the color with probability  $1 - \epsilon$ . Otherwise, flip the color



# Robust tree reconstruction

To Analyze BP with good initial messages, we need to understand the following process

Take a tree and color the root randomly.

For each child, copy the color with probability  $1 - \epsilon$ . Otherwise, flip the color

Flip the leaves with probability  $\delta < 1/2$



# Robust tree reconstruction

To Analyze BP with good initial messages, we need to understand the following process

Take a tree and color the root randomly.

For each child, copy the color with probability  $1 - \epsilon$ . Otherwise, flip the color

Flip the leaves with probability  $\delta < 1/2$



## Theorem (MNS-14)

*If  $(1 - 2\epsilon)^2 d \geq C$  then as  $n \rightarrow \infty$ , the extra noise doesn't hurt the reconstruction probability.*

# Robust tree reconstruction

To Analyze BP with good initial messages, we need to understand the following process

Take a tree and color the root randomly.

For each child, copy the color with probability  $1 - \epsilon$ . Otherwise, flip the color

Flip the leaves with probability  $\delta < 1/2$



## Theorem (MNS-14)

*If  $(1 - 2\epsilon)^2 d \geq C$  then as  $n \rightarrow \infty$ , the extra noise doesn't hurt the reconstruction probability.*

Strong property of a non-linear dynamical system (stronger than non-ergodicity, "robust reconstruction" etc. (Janson-M-04)).

# Summary

## Takeaways:

- ▶ Know how to reconstruct block models

# Summary

## Takeaways:

- ▶ Know how to reconstruct block models
- ▶ Theory can learn from practice.

# Summary

## Takeaways:

- ▶ Know how to reconstruct block models
- ▶ Theory can learn from practice.
- ▶ Nice to work with physicists and/or statisticians.

## Future Research

- ▶ Other planted models: more than two clusters, unequal size etc.

## Future Research

- ▶ Other planted models: more than two clusters, unequal size etc.
- ▶ Typically expect computational threshold to be different than information threshold.

## Future Research

- ▶ Other planted models: more than two clusters, unequal size etc.
- ▶ Typically expect computational threshold to be different than information threshold.
- ▶ For example: hidden clique.

## Future Research

- ▶ Other planted models: more than two clusters, unequal size etc.
- ▶ Typically expect computational threshold to be different than information threshold.
- ▶ For example: hidden clique.
- ▶ More challenging: BP and Survey Propagation for satisfiability problems.

## Future Research

- ▶ Other planted models: more than two clusters, unequal size etc.
- ▶ Typically expect computational threshold to be different than information threshold.
- ▶ For example: hidden clique.
- ▶ More challenging: BP and Survey Propagation for satisfiability problems.
- ▶ How to let linear algebra algorithms utilize local information?