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Why does BP Works??

» ML algorithm work well in practice.
» But Why?

» Understand linear algebra algorithms (spectral, singular
values ...) well.

» Non-linear algorithms?

» Especially when they do better even in practice! than all
algorithm we know.

» Today: Belief Propagation.
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Graphical Models and Belief Propagation

» Graphical Models or Markov Random Fields are one of the
most popular ways to prescribe high dimensional
distributions.

Encoding based on conditional independence statements.
Based on a probabilistic model on graph / graphical model.

(Pairwise) Graphical model is based on a graph
G = (V, E) and a distribution
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Goal of Belief Propagation: Compute marginals:

p(x, = a)??
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Example: Graph coloring

» Let p be the uniform g-coloring model of a graph.
» Can write:

p(xv:veV)=2" T vxux) xelq”
(u,v)eE

where (¢, d) =1 — ¢ q.

p(xy =¢)??
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Belief Propagation on Trees

On trees: O(n?) time to get all marginals using recursion.
More sophisticated Dynamic Programing is done in

O(n x diameter). "Belief Propagation”.

Belief Propagation Variables: (n2_,, : (v,u) € E, a € A).
Updates:

nsau(t"i‘ 1) = z! H Znﬁ/av(t)w(v,u)(bv a)

w#u,(w,v)EE b
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Belief Propagation on Trees

» On trees: O(n?) time to get all marginals using recursion.
» More sophisticated Dynamic Programing is done in

O(n x diameter). "Belief Propagation”.
» Belief Propagation Variables: (g, : (v,u) € E, a € A).
» Updates:

a0 =27 [ done(Bv (b a)

w#u,(w,v)EE b

» Marginal of x, is approximated by
pxy=a):=Z2" [ niu(x)
(v,u)eE
» Example of 3-coloring:
[uenoypw(1 = ni-v)

> bt Tuenqupw(1 = 18-v)

a _
Nyv—w =
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Belief Propagation on (tree-like) graphs

v

BP is very extensively applied to general graphs.
Not clear what it gives!

v

Mathematical formulation:

Given a graph G, let T(G) be the universal cover of G.
T(Q) is the tree of non-backtracking walks on G.

To compute marginal x, at G, compute x, at T(G).

If G is not a forest then T(G) is infinite ...
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>

Beautiful Work in Coding Theory - LDPC
IfG=(V,E)

1. locally tree-like and

2. can initialize n,_,, so that they are correlated to x,

Then BP converges to correct correct values!
Luby-Mitzenmacher-Shokrollahi-88
Spielman-00,Richardson-Shokrollahi-Urbanke-01.
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Treelike graphs, local information and LDPC

>

Beautiful Work in Coding Theory - LDPC
IfG=(V,E)

1. locally tree-like and

2. can initialize n,_,, so that they are correlated to x,

Then BP converges to correct correct values!
Luby-Mitzenmacher-Shokrollahi-88
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(Why) Does BP work in other cases?

In particular, how does it work when there is no way to
initialize the messages?

v
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The Block Model Conjecture

» Conjecture (Decelle, Krzakala, Moore and Zdeborova):
"Belief-Propagation” is the optimal algorithm.

» Works amazingly well both on real and simulated data.

» Other algorithms we know do not work as well. In
particular, completely fail when (a — b)? ~ 2(a+ b).

» Note: can only solve up to global flip.

» Note: graph is very sparse - cannot hope to recover
clusters exacily.



BP on tree-like graphs

oy = g
s | e

» Note: initializing correctly (1/2,1/2) is a fixed point.
» Instead initialize randomly ??



The Block Model in pictures

A sample from the model




The Block Model in pictures

The data (one sample!)




The Block Model in pictures

What we want to Infer
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» Thm 3 (M-Neeman-Sly, 14): If (a — b)® > 100(a + b) then
Belief Propagation is optimal for detection.

» Thm 4 (M-Neeman-Sly, 14): It's possible to recover all the
nodes in the graph if and only if w.h.p. for all nodes v, the
majority of the neighbors of v are in the same cluster as v.

» Note: Thm 4 improves on a very long line of research in
computer science and statistics including Boppana (87)
Dyer and Freeze (89), Jerrum and Sorkin (89), Carson and
Impagliazzo (01) and Condon and Karp (01).
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BP and a New Type of Random Matrix

» Thm 2 If (a— b)? > 2(a+ b) then possible to detect.

» Conj:(Krzakala,Moore,M,Neeman,Sly, Zdebrovoa,Zhang 13): If
A is the adjacency matrix, then w.h.p the second
eigenvector of

N:(f, D;’), D — diag(dy,. ..., dy,),

is correlated with the partition.
» No orthogonal structure! N is not symmetric or normal.
Singular vector of N are useless.

» KMMNSZZ established connections between N and Belief
Propagation
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From BP to linear Algebra

Coja-Oghlan-M-Vilenchik (09): to analyze BP with no local
information linearize it.

Linearization gives (n® — n) x (n? — n) matrix.
KMMNSZZ via Hashimoto 89 - get small matrix
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N:(f/ DA’>, D = diag(cl, .., ),

v

Study it and conjecture it’s optimality.



Zeta functions on graphs

1. Hashimoto-89: Introduced a graph analogue of Zeta
functions of p-adic algebraic varieties:

Z(u,f) =exp (i Z f(f)ug),

(=1 CeX,

where X, = set of closed non backtracking loops of length
¢and f(C) = [[ecc f(€)-

2. Proved that Z(f, u) is a rational function of w.

3. Asked: how much Z(f, u) is revealing about the graph ...
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The spectrum on

real networks

30 4
20 Polblogs q=2 Dolphins g=2 & p
Overlap: 0.8533 Overlap: 0.7419 »
19 g
40 60 80 4 4 6 8 4 8
A
4
Football g=10 Adjnoun g=2 Palb
ootoall g Overlap: 0.6250 Over
6 8 10 12 5 10 8




Performance on Real Networks

» R=N.
» L = normalized laplacian (random walk matrix).
network name | BP overlap | sign of vector2 | k-means | sign of vector 2 | k-means
of R of R of Lsym of Lsym
words * 0.9107 0.875 0.5625 0.5714
political blogs 0.5167 0.9313 0.6383 0.9542 0.9476
karate club 0.5588 1 1 0.9706 1
dophin 0.9838 0.8710 0.96774 0.9677 0.9839
brsmall * 0.6548 0.69345 0.6235 0.6687
brcorp * 0.6993 0.72631 0.7332 0.6993
adjnoun 0.5625 0.8125 0.8214 0.5446 0.5357
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Two proofs avoiding the spectral conjecture

» Thm 2 (M-Neeman-Sly, Massoulie 14): If
(a— b)? > 2(a+ b) then possible to detect.

> MNS: Let X“(u, v) = 3 [Tecg(1((u, v) € G) — 252) where
the sum is over all non backtracking walks of length
¢ = Clogn.

» Show that X*(u, v) is (typically) larger if u and v are in
same cluster.

» Massoulie: Define a symmetric matrix A,y = number of
self-avoiding walks from u to v of length log n and show
second eigenvector is correlated with partition.

» Massoulie gets symmetric matrix. MNS - almost linear
time.
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Future Research

» Other planted models: more than two clusters, unequal
size etc.

» Typically expect computational threshold to be different
than information threshold.

» For example: hidden clique.

» More challenging: BP and Survey Propagation for
satisfiability problems.

» How to let linear algebra algorithms utilize local
information?



A New Type of Phase Transition Question

» Thm 1 (M-Neeman-Sly 12): f (a— b)? < 2(a + b) the
impossible to infer better than random.

» Thm 3 (M-Neeman-Sly, 14): If (a— b)? > 100(a + b) then
Belief Propagation is optimal for detection.

» Proofs via phase transitions for broadcasting on trees.
Thm 3 requires a new phase transition!
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Broadcasting on trees

Take a tree. Fix € € (0, 1).
Color the root randomly.

For each child, copy the color
with probability 1 — e.
Otherwise, flip the color

Question: given the leaves, can we guess the color of the root?
Answer: iff (1 — 2¢)2d > 1

(where d is the branching number of the tree)

(... Evans, Kenyon, Peres, Schulman, 2000 ... )

= Thm1withe =a/(a+b),d=(a+b)/2.
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Robust tree reconstruction

To Analyze BP with good initial messages, we need to
understand the following process

Take a tree and color the root randomly.

For each child, copy the color with
probability 1 — e. Otherwise, flip the color

Flip the leaves with probability § < 1/2
Theorem (MNS-14)

If (1 —2¢)2d > C then as n — oo, the extra noise doesn’t hurt
the reconstruction probability.

Strong property of a non-linear dynamical system (stronger
than non-ergodicity, "robust reconstruction” etc. (Janson-M-04).
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Takeaways:

» Know how to reconstruct block models
» Theory can learn from practice.
» Nice to work with physicists and/or statisticians.
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