The Surprising Power of Belief Propagation

Elchanan Mossel

January 8, 2015
Why does BP Works??

- ML algorithm work well in practice.
- But Why?
- Understand linear algebra algorithms (spectral, singular values ...) well.
- Non-linear algorithms?
- Especially when they do better even in practice! than all algorithm we know.
- Today: Belief Propagation.
Graphical Models or Markov Random Fields are one of the most popular ways to prescribe high dimensional distributions.

- Encoding based on conditional independence statements.
- Based on a probabilistic model on graph / graphical model.
Graphical Models or Markov Random Fields are one of the most popular ways to prescribe high dimensional distributions.

Encoding based on *conditional independence statements*.

Based on a probabilistic model on graph / *graphical model*.

(Pairwise) Graphical model is based on a graph $G = (V, E)$ and a distribution

$$p((x_v : v \in V)) = Z^{-1} \prod_{(u, v) \in E} \psi(u, v)(x_u, x_v), \quad x \in A^V$$
Graphical Models or Markov Random Fields are one of the most popular ways to prescribe high dimensional distributions.

Encoding based on conditional independence statements.

Based on a probabilistic model on graph / graphical model.

(Pairwise) Graphical model is based on a graph $G = (V, E)$ and a distribution

$$p((x_v : v \in V)) = Z^{-1} \prod_{(u,v) \in E} \psi(u,v)(x_u, x_v), \quad x \in A^V$$

Goal of Belief Propagation: Compute marginals:

$$p(x_v = a)$$
Example: Graph coloring

Let p be the uniform q-coloring model of a graph.
Example: Graph coloring

Let p be the uniform q-coloring model of a graph.

Can write:

$$ p((x_v : v \in V)) = Z^{-1} \prod_{(u,v) \in E} \psi(x_u, x_v), \quad x \in [q]^V $$

where $\psi(c, d) = 1 - \delta_{c,d}$.

Example: Graph coloring

Let p be the uniform q-coloring model of a graph.

Can write:

$$p((x_v : v \in V)) = Z^{-1} \prod_{(u,v) \in E} \psi(x_u, x_v), \quad x \in [q]^V$$

where $\psi(c, d) = 1 - \delta_{c,d}$.

$$p(x_v = c)$$
Belief Propagation on Trees
Belief Propagation on Trees

- On trees: $O(n^2)$ time to get all marginals using recursion.

Belief Propagation Variables:

- $\eta_{av \rightarrow u}$: $(v, u) \in E, a \in A$.

Updates:

- $\eta_{av \rightarrow u}(t+1) := Z^{-1} \prod_{w \neq u, (w, v) \in E} \sum_{b} \eta_{bw \rightarrow v}(t) \psi(v, u)(b, a)$.

Marginal of x_u is approximated by $p(x_u = a) := Z^{-1} \prod_{(v, u) \in E} \eta_{av \rightarrow u}(\infty)$.

Example of 3-coloring:

- $\eta_{av \rightarrow w} = \prod_{u \in N(v \setminus w)} (1 - \eta_{au \rightarrow v}) \sum_{3} \prod_{u \in N(v \setminus w)} (1 - \eta_{bu \rightarrow v})$.

Belief Propagation on Trees

- On trees: $O(n^2)$ time to get all marginals using recursion.
- More sophisticated *Dynamic Programming* is done in $O(n \times \text{diameter})$. "Belief Propagation".

Belief Propagation Variables: $(\eta^a_v \rightarrow u: (v, u) \in E, a \in A)$.

Updates:

$$
\eta^a_v \rightarrow u(t+1) :=
Z - 1 \prod_{w \neq u, (w, v) \in E} \sum_{b} \eta^b_w \rightarrow v(t) \psi(v, u)(b, a)
$$

Marginal of x_u is approximated by

$$p(x_u = a) := Z^{-1} \prod_{(v, u) \in E} \eta^a_v \rightarrow u(\infty)$$

Example of 3-coloring:

$$\eta^a_v \rightarrow w = \prod_{u \in N(v)} (1 - \eta^a_u \rightarrow v) \sum_{b} \prod_{u \in N(v)} (1 - \eta^b_u \rightarrow v)$$
Belief Propagation on Trees

- On trees: $O(n^2)$ time to get all marginals using recursion.
- More sophisticated *Dynamic Programming* is done in $O(n \times \text{diameter})$. "Belief Propagation".
- Belief Propagation Variables: $(\eta^a_{v \to u} : (v, u) \in E, a \in A)$.
Belief Propagation on Trees

- On trees: $O(n^2)$ time to get all marginals using recursion.
- More sophisticated *Dynamic Programming* is done in $O(n \times \text{diameter})$. "Belief Propagation”.
- Belief Propagation Variables: $(\eta^a_{v \rightarrow u} : (v, u) \in E, a \in A)$.
- Updates:

$$
\eta^a_{v \rightarrow u}(t + 1) := Z^{-1} \prod_{w \neq u, (w, v) \in E} \sum_{b} \eta^b_{w \rightarrow v}(t) \psi_{(v, u)}(b, a)
$$
Belief Propagation on Trees

- On trees: $O(n^2)$ time to get all marginals using recursion.
- More sophisticated Dynamic Programming is done in $O(n \times \text{diameter})$. "Belief Propagation".
- Belief Propagation Variables: $(\eta^a_{v \rightarrow u} : (v, u) \in E, a \in A)$.
- Updates:

$$\eta^a_{v \rightarrow u}(t + 1) := Z^{-1} \prod_{w \neq u, (w, v) \in E} \sum_b \eta^b_{w \rightarrow v}(t) \psi_{(v, u)}(b, a)$$

- Marginal of x_u is approximated by

$$p(x_u = a) := Z^{-1} \prod_{(v, u) \in E} \eta^a_{v \rightarrow u}(\infty)$$
Belief Propagation on Trees

- On trees: \(O(n^2) \) time to get all marginals using recursion.
- More sophisticated *Dynamic Programming* is done in \(O(n \times \text{diameter}) \). "Belief Propagation".
- Belief Propagation Variables: \((\eta^a_{v \rightarrow u} : (v, u) \in E, a \in A)\).
- Updates:
 \[
 \eta^a_{v \rightarrow u}(t + 1) := Z^{-1} \prod_{w \neq u, (w, v) \in E} \sum_b \eta^b_{w \rightarrow v}(t) \psi_{(v, u)}(b, a)
 \]
- Marginal of \(x_u \) is approximated by
 \[
 p(x_u = a) := Z^{-1} \prod_{(v, u) \in E} \eta^a_{v \rightarrow u}(\infty)
 \]
- Example of 3-coloring:
 \[
 \eta^a_{v \rightarrow w} = \frac{\prod_{u \in N(v) \setminus \{w\}} (1 - \eta^a_{u \rightarrow v})}{\sum_{b=1}^{3} \prod_{u \in N(v) \setminus \{w\}} (1 - \eta^b_{u \rightarrow v})}
 \]
Belief Propagation on (tree-like) graphs

- BP is very extensively applied to general graphs.
Belief Propagation on (tree-like) graphs

- BP is very extensively applied to general graphs.
- Not clear what it gives!
Belief Propagation on (tree-like) graphs

- BP is very extensively applied to general graphs.
- Not clear what it gives!
- Mathematical formulation:

Given a graph G, let $T(G)$ be the universal cover of G. $T(G)$ is the tree of non-backtracking walks on G. To compute marginal x_v at G, compute x_v at $T(G)$. If G is not a forest then $T(G)$ is infinite...
Belief Propagation on (tree-like) graphs

- BP is very extensively applied to general graphs.
- Not clear what it gives!
- Mathematical formulation:
- Given a graph G, let $T(G)$ be the \textit{universal cover} of G.
- $T(G)$ is the \textit{tree} of non-backtracking walks on G.
Belief Propagation on (tree-like) graphs

- BP is very extensively applied to general graphs.
- Not clear what it gives!
- Mathematical formulation:
 - Given a graph G, let $T(G)$ be the universal cover of G.
 - $T(G)$ is the tree of non-backtracking walks on G.
 - To compute marginal x_v at G, compute x_v at $T(G)$.
Belief Propagation on (tree-like) graphs

- BP is very extensively applied to general graphs.
- Not clear what it gives!
- Mathematical formulation:
 - Given a graph G, let $T(G)$ be the universal cover of G.
 - $T(G)$ is the tree of non-backtracking walks on G.
 - To compute marginal x_v at G, compute x_v at $T(G)$.
 - If G is not a forest then $T(G)$ is infinite...
BP on tree-like graphs and local information
If $G = (V, E)$ is:
1. locally tree-like and
2. can initialize $\eta_{u \rightarrow v}$ so that they are correlated to x_v

Then BP converges to correct values!

- Luby-Mitzenmacher-Shokrollahi-88
- Spielman-00, Richardson-Shokrollahi-Urbanke-01.

(Why) Does BP work in other cases?

In particular, how does it work when there is no way to initialize the messages?
Treelike graphs, local information and LDPC

- Beautiful Work in Coding Theory - LDPC
- If \(G = (V, E) \)
 1. locally tree-like and
 2. can initialize \(\eta_{u \rightarrow v} \) so that they are correlated to \(x_v \)

Then BP converges to correct correct values!
If $G = (V, E)$

1. locally tree-like and
2. can initialize $\eta_{u \rightarrow v}$ so that they are correlated to x_v

Then BP converges to correct correct values!

- Beautiful Work in Coding Theory - LDPC
- Luby-Mitzenmacher-Shokrollahi-88
- Spielman-00, Richardson-Shokrollahi-Urbanke-01.
If $G = (V, E)$

1. locally tree-like and
2. can initialize $\eta_{u \rightarrow v}$ so that they are correlated to x_v

Then BP converges to correct correct values!

Luby-Mitzenmacher-Shokrollahi-88

(Why) Does BP work in other cases?

In particular, how does it work when there is no way to initialize the messages?
BP on tree-like graphs without local information
The Block Model

- Random graph $G = (V, E)$ on n nodes.
- Half blue / half red.

Conjecture (Decelle, Krzakala, Moore and Zdeborova):

"Belief-Propagation" is the optimal algorithm.

and ... possible to do better than random iff

$$(a - b)^2 > 2(a + b).$$
The Block Model

- Random graph $G = (V, E)$ on n nodes.
- Half blue / half red.
- Two nodes of the same color are connected with probability a/n.
- Two nodes with different colors are connected with probability b/n.

Conjecture (Decelle, Krzakala, Moore and Zdeborova): "Belief-Propagation" is the optimal algorithm.

and ... possible to do better than random iff $(a - b)^2 > 2(a + b)$.

The Block Model

- Random graph $G = (V, E)$ on n nodes.
- Half blue / half red.
- Two nodes of the same color are connected with probability a/n.
- Two nodes with different colors are connected with probability b/n.
- Inference: find which nodes are red and which are blue?
Random graph $G = (V, E)$ on n nodes.

Half blue / half red.

Two nodes of the same color are connected with probability a/n.

Two nodes with different colors are connected with probability b/n.

Inference: find which nodes are red and which are blue?

Conjecture (Decelle, Krzakala, Moore and Zdeborova): "Belief-Propagation" is the optimal algorithm.

... possible to do better than random iff $(a - b)^2 > 2(a + b)$.

The Block Model
Conjecture (Decelle, Krzakala, Moore and Zdeborova): "Belief-Propagation" is the optimal algorithm.
The Block Model Conjecture

- **Conjecture** (Decelle, Krzakala, Moore and Zdeborova): "Belief-Propagation" is the optimal algorithm.
- Works amazingly well both on real and simulated data.
The Block Model Conjecture

- **Conjecture** (Decelle, Krzakala, Moore and Zdeborova): "Belief-Propagation" is the optimal algorithm.
- Works amazingly well both on real and simulated data.
- Other algorithms we know do not work as well. In particular, completely fail when \((a - b)^2 \sim 2(a + b)\).
Conjecture (Decelle, Krzakala, Moore and Zdeborova): "Belief-Propagation" is the optimal algorithm.

Works amazingly well both on real and simulated data.

Other algorithms we know do not work as well. In particular, completely fail when \((a - b)^2 \sim 2(a + b)\).

Note: can only solve up to global flip.
The Block Model Conjecture

- **Conjecture** (Decelle, Krzakala, Moore and Zdeborova): "Belief-Propagation" is the optimal algorithm.
- Works amazingly well both on real and simulated data.
- Other algorithms we know do not work as well. In particular, completely fail when \((a - b)^2 \sim 2(a + b)\).
- Note: can only solve up to global flip.
- Note: graph is very sparse - cannot hope to recover clusters exactly.
BP on tree-like graphs without local information

- Initializing correctly $(1/2, 1/2)$ is a fixed point.
- Instead initialize randomly ??
The Block Model in pictures

A sample from the model
The Block Model in pictures

The data (one sample!)
The Block Model in pictures

What we want to Infer
Thm 1 (M-Neeman-Sly 12): If $(a - b)^2 \leq 2(a + b)$ the impossible to infer better than random.
The Conjecture is Correct

- **Thm 1** (M-Neeman-Sly 12): If \((a - b)^2 \leq 2(a + b)\) the impossible to infer better than random.

- **Thm 2** (M-Neeman-Sly, Massoulie 14): If \((a - b)^2 > 2(a + b)\) then possible to detect (infer better than random)
The Conjecture is Correct

- **Thm 1** (M-Neeman-Sly 12): If \((a - b)^2 \leq 2(a + b)\) the impossible to infer better than random.

- **Thm 2** (M-Neeman-Sly, Massoulie 14): If \((a - b)^2 > 2(a + b)\) then possible to detect (infer better than random)

- **Thm 3** (M-Neeman-Sly, 14): If \((a - b)^2 > 100(a + b)\) then Belief Propagation is optimal for detection.

Note: Thm 4 improves on a very long line of research in computer science and statistics including Boppana (87) Dyer and Freeze (89), Jerrum and Sorkin (89), Carson and Impagliazzo (01) and Condon and Karp (01).
The Conjecture is Correct

- **Thm 1** (M-Neeman-Sly 12): If \((a - b)^2 \leq 2(a + b)\) the impossible to infer better than random.

- **Thm 2** (M-Neeman-Sly, Massoulie 14): If \((a - b)^2 > 2(a + b)\) then possible to detect (infer better than random)

- **Thm 3** (M-Neeman-Sly, 14): If \((a - b)^2 > 100(a + b)\) then Belief Propagation is optimal for detection.

- **Thm 4** (M-Neeman-Sly, 14): It’s possible to recover all the nodes in the graph if and only if w.h.p. for all nodes \(v\), the majority of the neighbors of \(v\) are in the same cluster as \(v\).
The Conjecture is Correct

- **Thm 1** (M-Neeman-Sly 12): If \((a - b)^2 \leq 2(a + b)\) the impossible to infer better than random.

- **Thm 2** (M-Neeman-Sly, Massoulie 14): If \((a - b)^2 > 2(a + b)\) then possible to detect (infer better than random)

- **Thm 3** (M-Neeman-Sly, 14): If \((a - b)^2 > 100(a + b)\) then Belief Propagation is optimal for detection.

- **Thm 4** (M-Neeman-Sly, 14): It’s possible to recover all the nodes in the graph if and only if w.h.p. for all nodes \(v\), the majority of the neighbors of \(v\) are in the same cluster as \(v\).

Note: Thm 4 improves on a very long line of research in computer science and statistics including Boppana (87) Dyer and Freeze (89), Jerrum and Sorkin (89), Carson and Impagliazzo (01) and Condon and Karp (01).
Thm 2 If $(a - b)^2 > 2(a + b)$ then possible to detect.
Thm 2: If \((a - b)^2 > 2(a + b)\) then possible to detect.

 Conj: (Krzakala, Moore, M, Neeman, Sly, Zdebrovoa, Zhang 13): If \(A\) is the adjacency matrix, then w.h.p the second eigenvector of

\[
N = \begin{pmatrix}
0 & D - I \\
-I & A
\end{pmatrix}, \quad D = \text{diag}(d_{v_1}, \ldots, d_{v_n}),
\]

is correlated with the partition.
Thm 2 If \((a - b)^2 > 2(a + b)\) then possible to detect.

 Conj: (Krzakala, Moore, M, Neeman, Sly, Zdebrovoa, Zhang 13): If \(A\) is the adjacency matrix, then w.h.p the second eigenvector of

\[
N = \begin{pmatrix} 0 & D - I \\ -I & A \end{pmatrix}, \quad D = \text{diag}(d_{v_1}, \ldots, d_{v_n}),
\]

is correlated with the partition.

No orthogonal structure! \(N\) is not symmetric or normal. Singular vector of \(N\) are useless.
Thm 2 If \((a - b)^2 > 2(a + b)\) then possible to detect.

Conj: (Krzakala, Moore, M, Neeman, Sly, Zdebrovoa, Zhang 13): If \(A\) is the adjacency matrix, then w.h.p the second eigenvector of

\[
N = \begin{pmatrix}
0 & D - I \\
-I & A
\end{pmatrix}, \quad D = \text{diag}(d_{v_1}, \ldots, d_{v_n}),
\]

is correlated with the partition.

No orthogonal structure! \(N\) is not symmetric or normal. Singular vector of \(N\) are useless.

KMMNSZZZ established connections between \(N\) and Belief Propagation
From BP to linear Algebra

- Coja-Oghlan-M-Vilenchik (09): to analyze BP with no local information linearize it.
Coja-Oghlan-M-Vilenchik (09): to analyze BP with no local information linearize it.

Linearization gives \((n^2 - n) \times (n^2 - n)\) matrix.
Coja-Oghlan-M-Vilenchik (09): to analyze BP with no local information linearize it.

Linearization gives $(n^2 - n) \times (n^2 - n)$ matrix.

KMMNSZZ via Hashimoto 89 - get small matrix

\[
N = \begin{pmatrix} 0 & D - I \\ -I & A \end{pmatrix}, \quad D = \text{diag}(d_{v_1}, \ldots, d_{v_n}),
\]
Coja-Oghlan-M-Vilenchik (09): to analyze BP with no local information linearize it.

Linearization gives \((n^2 - n) \times (n^2 - n)\) matrix.

KMMNSZZ via Hashimoto 89 - get small matrix

\[
N = \begin{pmatrix}
0 & D - I \\
- I & A
\end{pmatrix}, \quad D = \text{diag}(d_{v_1}, \ldots, d_{v_n}),
\]

Study it and conjecture it’s optimality.
1. Hashimoto-89: Introduced a graph analogue of Zeta functions of p-adic algebraic varieties:

$$Z(u, f) = \exp \left(\sum_{\ell=1}^{\infty} \sum_{C \in X_\ell} \frac{f(C)}{\ell} u^{\ell} \right),$$

where $X_\ell = \text{set of closed non backtracking loops of length } \ell$ and $f(C) = \prod_{e \in C} f(e)$.

2. Proved that $Z(f, u)$ is a rational function of u.

3. Asked: how much $Z(f, u)$ is revealing about the graph ...
The Spectrum of N
The spectrum on real networks
\[R = N. \]

\[L = \text{normalized laplacian (random walk matrix)}. \]

<table>
<thead>
<tr>
<th>network name</th>
<th>BP overlap</th>
<th>sign of vector 2 of (R)</th>
<th>k-means of (R)</th>
<th>sign of vector 2 of (L_{sym})</th>
<th>k-means of (L_{sym})</th>
</tr>
</thead>
<tbody>
<tr>
<td>words</td>
<td>*</td>
<td>\textbf{0.9107}</td>
<td>0.875</td>
<td>0.5625</td>
<td>0.5714</td>
</tr>
<tr>
<td>political blogs</td>
<td>0.5167</td>
<td>0.9313</td>
<td>0.6383</td>
<td>\textbf{0.9542}</td>
<td>0.9476</td>
</tr>
<tr>
<td>karate club</td>
<td>0.5588</td>
<td>1</td>
<td>1</td>
<td>0.9706</td>
<td>1</td>
</tr>
<tr>
<td>dophin</td>
<td>\textbf{0.9838}</td>
<td>0.8710</td>
<td>0.96774</td>
<td>0.9677</td>
<td>\textbf{0.9839}</td>
</tr>
<tr>
<td>brsmall</td>
<td>*</td>
<td>0.6548</td>
<td>\textbf{0.69345}</td>
<td>0.6235</td>
<td>0.6687</td>
</tr>
<tr>
<td>brcorp</td>
<td>*</td>
<td>0.6993</td>
<td>0.72631</td>
<td>\textbf{0.7332}</td>
<td>0.6993</td>
</tr>
<tr>
<td>adjnoun</td>
<td>0.5625</td>
<td>0.8125</td>
<td>\textbf{0.8214}</td>
<td>0.5446</td>
<td>0.5357</td>
</tr>
</tbody>
</table>
Two proofs avoiding the spectral conjecture

- **Thm 2** (M-Neeman-Sly, Massoulie 14): If \((a - b)^2 > 2(a + b)\) then possible to detect.
Two proofs avoiding the spectral conjecture

- **Thm 2** (M-Neeman-Sly, Massoulie 14): If \((a - b)^2 > 2(a + b)\) then possible to detect.

- **MNS:** Let \(X^\ell(u, v) = \sum_{\Gamma} \prod_{e \in G} (1(((u, v) \in G) - \frac{a+b}{2})\) where the sum is over all non backtracking walks of length \(\ell = C \log n\).
Two proofs avoiding the spectral conjecture

- **Thm 2** (M-Neeman-Sly, Massoulie 14): If
 \[(a - b)^2 > 2(a + b)\] then possible to detect.

- **MNS**: Let
 \[X^\ell(u, v) = \sum_\Gamma \prod_{e \in G}(1(((u, v) \in G) - \frac{a+b}{2})\]

 where the sum is over all non backtracking walks of length
 \[\ell = C \log n.\]

- Show that \(X^\ell(u, v)\) is (typically) larger if \(u\) and \(v\) are in same cluster.
Two proofs avoiding the spectral conjecture

- **Thm 2** (M-Neeman-Sly, Massoulie 14): If \((a - b)^2 > 2(a + b)\) then possible to detect.

- **MNS**: Let \(X^\ell(u, v) = \sum_{\Gamma} \prod_{e \in G} (1((u, v) \in G) - \frac{a+b}{2})\) where the sum is over all non backtracking walks of length \(\ell = C \log n\).

- Show that \(X^\ell(u, v)\) is (typically) larger if \(u\) and \(v\) are in the same cluster.

- Massoulie: Define a symmetric matrix \(A_{u,v} = \text{number of self-avoiding walks from } u \text{ to } v \text{ of length } \varepsilon \log n\) and show second eigenvector is correlated with partition.
Two proofs avoiding the spectral conjecture

- **Thm 2** (M-Neeman-Sly, Massoulie 14): If \((a - b)^2 > 2(a + b)\) then possible to detect.

- **MNS:** Let \(X^\ell(u, v) = \sum_{\Gamma} \prod_{e \in G} (1((u, v) \in G) - \frac{a+b}{2})\) where the sum is over all non backtracking walks of length \(\ell = C \log n\).

- Show that \(X^\ell(u, v)\) is (typically) larger if \(u\) and \(v\) are in same cluster.

- **Massoulie:** Define a symmetric matrix \(A_{u,v} = \) number of self-avoiding walks from \(u\) to \(v\) of length \(\varepsilon \log n\) and show second eigenvector is correlated with partition.

- Massoulie gets symmetric matrix. MNS - almost linear time.
Future Research

- Other planted models: more than two clusters, unequal size etc.

Typically expect computational threshold to be different than information threshold.

For example: hidden clique.

How to let linear algebra algorithms utilize local information?
Future Research

- Other planted models: more than two clusters, unequal size etc.
- Typically expect computational threshold to be different than information threshold.
Future Research

- Other planted models: more than two clusters, unequal size etc.
- Typically expect computational threshold to be different than information threshold.
- For example: hidden clique.
Future Research

- Other planted models: more than two clusters, unequal size etc.
- Typically expect computational threshold to be different than information threshold.
- For example: hidden clique.
Future Research

- Other planted models: more than two clusters, unequal size etc.
- Typically expect computational threshold to be different than information threshold.
- For example: hidden clique.
- How to let linear algebra algorithms utilize local information?
A New Type of Phase Transition Question

- **Thm 1** (M-Neeman-Sly 12): $f(a - b)^2 \leq 2(a + b)$ the impossible to infer better than random.

- **Thm 3** (M-Neeman-Sly, 14): If $(a - b)^2 > 100(a + b)$ then Belief Propagation is optimal for detection.

- Proofs via phase transitions for broadcasting on trees. Thm 3 requires a new phase transition!
Take a tree. Fix $\epsilon \in (0, 1)$.

Question: given the leaves, can we guess the color of the root?

Answer: iff $(1 - 2\epsilon)^2 > 1$ (where d is the branching number of the tree)

(... Evans, Kenyon, Peres, Schulman, 2000 ...)
Take a tree. Fix $\epsilon \in (0, 1)$.

Color the root randomly.

Question: given the leaves, can we guess the color of the root?

Answer: iff $(1 - 2\epsilon)^{2d} > 1$ (where d is the branching number of the tree)

(... Evans, Kenyon, Peres, Schulman, 2000 ...)

\Rightarrow Thm 1 with $\epsilon = a/(a+b)$, $d = (a+b)/2$.

.
Take a tree. Fix \(\epsilon \in (0, 1) \).

Color the root randomly.

For each child, copy the color with probability \(1 - \epsilon \).
Otherwise, flip the color

... Evans, Kenyon, Peres, Schulman, 2000 ...
Take a tree. Fix $\epsilon \in (0, 1)$.

Color the root randomly.

For each child, copy the color with probability $1 - \epsilon$. Otherwise, flip the color.

Question: given the leaves, can we guess the color of the root?

Answer: iff $(1 - 2\epsilon)^{2d} > 1$ (where d is the branching number of the tree).

(... Evans, Kenyon, Peres, Schulman, 2000 ...)

\Rightarrow Thm 1 with $\epsilon = a / (a + b)$, $d = (a + b) / 2$.
Take a tree. Fix $\epsilon \in (0, 1)$.

Color the root randomly.

For each child, copy the color with probability $1 - \epsilon$.
Otherwise, flip the color.
Take a tree. Fix $\epsilon \in (0, 1)$.

Color the root randomly.

For each child, copy the color with probability $1 - \epsilon$.
Otherwise, flip the color

Question: given the leaves, can we guess the color of the root?
Take a tree. Fix $\epsilon \in (0, 1)$.

Color the root randomly.

For each child, copy the color with probability $1 - \epsilon$. Otherwise, flip the color.

Question: given the leaves, can we guess the color of the root?
Answer: iff $(1 - 2\epsilon)^2 d > 1$

(where d is the branching number of the tree)

(... Evans, Kenyon, Peres, Schulman, 2000 ...)
Take a tree. Fix $\epsilon \in (0, 1)$.

Color the root randomly.

For each child, copy the color with probability $1 - \epsilon$. Otherwise, flip the color.

Question: given the leaves, can we guess the color of the root?
Answer: iff $(1 - 2\epsilon)^2 d > 1$
(\text{where } d \text{ is the \textit{branching number} of the tree})
(... Evans, Kenyon, Peres, Schulman, 2000 ...)
\implies \text{Thm 1 with } \epsilon = a/(a + b), \quad d = (a + b)/2.$
Back to the original problem
To Analyze BP with good initial messages, we need to understand the following process:

- Take a tree and color the root randomly.
- For each child, copy the color with probability $1 - \epsilon$. Otherwise, flip the color.
- Flip the leaves with probability $\delta < \frac{1}{2}$.

Theorem (MNS-14): If $(1 - 2\epsilon)^2d \geq C$, then as $n \to \infty$, the extra noise doesn't hurt the reconstruction probability.

Strong property of a non-linear dynamical system (stronger than non-ergodicity, "robust reconstruction" etc. (Janson-M-04)).
To Analyze BP with good initial messages, we need to understand the following process:

Take a tree and color the root randomly.

For each child, copy the color with probability $1 - \epsilon$. Otherwise, flip the color.
To Analyze BP with good initial messages, we need to understand the following process:

Take a tree and color the root randomly.

For each child, copy the color with probability $1 - \epsilon$. Otherwise, flip the color.

Flip the leaves with probability $\delta < 1/2$.
To Analyze BP with good initial messages, we need to understand the following process

Take a tree and color the root randomly.

For each child, copy the color with probability $1 - \epsilon$. Otherwise, flip the color.

Flip the leaves with probability $\delta < 1/2$.

Theorem (MNS-14)

$$(1 - 2\epsilon)^2 d \geq C \text{ then as } n \to \infty, \text{ the extra noise doesn't hurt the reconstruction probability.}$$
Robust tree reconstruction

To Analyze BP with good initial messages, we need to understand the following process:

Take a tree and color the root randomly.

For each child, copy the color with probability $1 - \epsilon$. Otherwise, flip the color.

Flip the leaves with probability $\delta < 1/2$.

Theorem (MNS-14)

If $(1 - 2\epsilon)^2 d \geq C$ then as $n \to \infty$, the extra noise doesn’t hurt the reconstruction probability.

Strong property of a non-linear dynamical system (stronger than non-ergodicity, ”robust reconstruction” etc. (Janson-M-04).
Takeaways:

- Know how to reconstruct block models
Takeaways:

- Know how to reconstruct block models
- Theory can learn from practice.
Takeaways:

- Know how to reconstruct block models
- Theory can learn from practice.
- Nice to work with physicists and/or statisticians.
Future Research

- Other planted models: more than two clusters, unequal size etc.
Future Research

- Other planted models: more than two clusters, unequal size etc.
- Typically expect computational threshold to be different than information threshold.
Future Research

- Other planted models: more than two clusters, unequal size etc.
- Typically expect computational threshold to be different than information threshold.
- For example: hidden clique.
Future Research

- Other planted models: more than two clusters, unequal size etc.
- Typically expect computational threshold to be different than information threshold.
- For example: hidden clique.
Future Research

- Other planted models: more than two clusters, unequal size etc.
- Typically expect computational threshold to be different than information threshold.
- For example: hidden clique.
- How to let linear algebra algorithms utilize local information?