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Why does BP Works??

I ML algorithm work well in practice.
I But Why?
I Understand linear algebra algorithms (spectral, singular

values ...) well.
I Non-linear algorithms?
I Especially when they do better even in practice! than all

algorithm we know.
I Today: Belief Propagation.



Graphical Models and Belief Propagation

I Graphical Models or Markov Random Fields are one of the
most popular ways to prescribe high dimensional
distributions.

I Encoding based on conditional independence statements.
I Based on a probabilistic model on graph / graphical model.

I (Pairwise) Graphical model is based on a graph
G = (V ,E) and a distribution

p((xv : v ∈ V )) = Z−1
∏

(u,v)∈E

ψ(u,v)(xu, xv ), x ∈ AV

I Goal of Belief Propagation: Compute marginals:

p(xv = a)??



Graphical Models and Belief Propagation

I Graphical Models or Markov Random Fields are one of the
most popular ways to prescribe high dimensional
distributions.

I Encoding based on conditional independence statements.
I Based on a probabilistic model on graph / graphical model.
I (Pairwise) Graphical model is based on a graph

G = (V ,E) and a distribution

p((xv : v ∈ V )) = Z−1
∏

(u,v)∈E

ψ(u,v)(xu, xv ), x ∈ AV

I Goal of Belief Propagation: Compute marginals:

p(xv = a)??



Graphical Models and Belief Propagation

I Graphical Models or Markov Random Fields are one of the
most popular ways to prescribe high dimensional
distributions.

I Encoding based on conditional independence statements.
I Based on a probabilistic model on graph / graphical model.
I (Pairwise) Graphical model is based on a graph

G = (V ,E) and a distribution

p((xv : v ∈ V )) = Z−1
∏

(u,v)∈E

ψ(u,v)(xu, xv ), x ∈ AV

I Goal of Belief Propagation: Compute marginals:

p(xv = a)??



Example: Graph coloring

I Let p be the uniform q-coloring model of a graph.

I Can write:

p((xv : v ∈ V )) = Z−1
∏

(u,v)∈E

ψ(xu, xv ), x ∈ [q]V

where ψ(c,d) = 1− δc,d .
I

p(xv = c)??
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Belief Propagation on Trees

I On trees: O(n2) time to get all marginals using recursion.

I More sophisticated Dynamic Programing is done in
O(n × diameter). ”Belief Propagation”.

I Belief Propagation Variables: (ηa
v→u : (v ,u) ∈ E , a ∈ A).

I Updates:

ηa
v→u(t + 1) := Z−1

∏
w 6=u,(w ,v)∈E

∑
b

ηb
w→v (t)ψ(v ,u)(b,a)

I Marginal of xu is approximated by

p(xu = a) := Z−1
∏

(v ,u)∈E

ηa
v→u(∞)

I Example of 3-coloring:

ηa
v→w =

∏
u∈N(v)\w (1− ηa

u→v )∑3
b=1

∏
u∈N(v)\w (1− ηb

u→v )
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Belief Propagation on (tree-like) graphs

I BP is very extensively applied to general graphs.

I Not clear what it gives!
I Mathematical formulation:
I Given a graph G, let T (G) be the universal cover of G.
I T (G) is the tree of non-backtracking walks on G.
I To compute marginal xv at G, compute xv at T (G).
I If G is not a forest then T (G) is infinite ...
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BP on tree-like graphs and local information



Treelike graphs, local information and LDPC

I Beautiful Work in Coding Theory - LDPC

I If G = (V ,E)

1. locally tree-like and
2. can initialize ηu→v so that they are correlated to xv

Then BP converges to correct correct values!
I Luby-Mitzenmacher-Shokrollahi-88
I Spielman-00,Richardson-Shokrollahi-Urbanke-01.
I (Why) Does BP work in other cases?
I In particular, how does it work when there is no way to

initialize the messages?
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BP on tree-like graphs without local information

???



The Block Model

I Random graph G = (V ,E) on n nodes.
I Half blue / half red.

I Two nodes of the same color are connected with
probability a/n.

I Two nodes with different colors are connected with
probability b/n.

I Inference: find which nodes are red and which are blue ?
I Conjecture (Decelle, Krzakala, Moore and Zdeborova):

”Belief-Propagation” is the optimal algorithm.
I and ... possible to do better than random iff

(a− b)2 > 2(a + b).
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The Block Model Conjecture

I Conjecture (Decelle, Krzakala, Moore and Zdeborova):
”Belief-Propagation” is the optimal algorithm.

I Works amazingly well both on real and simulated data.
I Other algorithms we know do not work as well. In

particular, completely fail when (a− b)2 ∼ 2(a + b).
I Note: can only solve up to global flip.
I Note: graph is very sparse - cannot hope to recover

clusters exactly.
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BP on tree-like graphs without local information

I Note: initializing correctly (1/2,1/2) is a fixed point.
I Instead initialize randomly ??



The Block Model in pictures
A sample from the model



The Block Model in pictures
The data (one sample!)



The Block Model in pictures
What we want to Infer



The Conjecture is Correct

I Thm 1 (M-Neeman-Sly 12): If (a− b)2 ≤ 2(a + b) the
impossible to infer better than random.

I Thm 2 (M-Neeman-Sly, Massoulie 14): If
(a− b)2 > 2(a + b) then possible to detect (infer better
than random)

I Thm 3 (M-Neeman-Sly, 14): If (a− b)2 > 100(a + b) then
Belief Propagation is optimal for detection.

I Thm 4 (M-Neeman-Sly, 14): It’s possible to recover all the
nodes in the graph if and only if w.h.p. for all nodes v , the
majority of the neighbors of v are in the same cluster as v .

I Note: Thm 4 improves on a very long line of research in
computer science and statistics including Boppana (87)
Dyer and Freeze (89), Jerrum and Sorkin (89), Carson and
Impagliazzo (01) and Condon and Karp (01).
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BP and a New Type of Random Matrix

I Thm 2 If (a− b)2 > 2(a + b) then possible to detect.

I Conj:(Krzakala,Moore,M,Neeman,Sly, Zdebrovoa,Zhang 13): If
A is the adjacency matrix, then w.h.p the second
eigenvector of

N =

(
0 D − I
−I A

)
, D = diag(dv1 , . . . ,dvn),

is correlated with the partition.
I No orthogonal structure! N is not symmetric or normal.

Singular vector of N are useless.
I KMMNSZZ established connections between N and Belief

Propagation
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From BP to linear Algebra

I Coja-Oghlan-M-Vilenchik (09): to analyze BP with no local
information linearize it.

I Linearization gives (n2 − n)× (n2 − n) matrix.
I KMMNSZZ via Hashimoto 89 - get small matrix

N =

(
0 D − I
−I A

)
, D = diag(dv1 , . . . ,dvn),

I Study it and conjecture it’s optimality.
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Zeta functions on graphs

1. Hashimoto-89: Introduced a graph analogue of Zeta
functions of p-adic algebraic varieties:

Z (u, f ) = exp
( ∞∑

`=1

∑
C∈X`

f (C)

`
u`
)
,

where X` = set of closed non backtracking loops of length
` and f (C) =

∏
e∈C f (e).

2. Proved that Z (f ,u) is a rational function of u.
3. Asked: how much Z (f ,u) is revealing about the graph ...
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The spectrum on real networks
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Performance on Real Networks

I R = N .
I L = normalized laplacian (random walk matrix).

network name BP overlap sign of vector 2 k-means sign of vector 2 k-means
of R of R of Lsym of Lsym

words * 0.9107 0.875 0.5625 0.5714
political blogs 0.5167 0.9313 0.6383 0.9542 0.9476
karate club 0.5588 1 1 0.9706 1

dophin 0.9838 0.8710 0.96774 0.9677 0.9839
brsmall * 0.6548 0.69345 0.6235 0.6687
brcorp * 0.6993 0.72631 0.7332 0.6993

adjnoun 0.5625 0.8125 0.8214 0.5446 0.5357



Two proofs avoiding the spectral conjecture

I Thm 2 (M-Neeman-Sly, Massoulie 14): If
(a− b)2 > 2(a + b) then possible to detect.

I MNS: Let X `(u, v) =
∑

Γ

∏
e∈G(1((u, v) ∈ G)− a+b

2 ) where
the sum is over all non backtracking walks of length
` = C log n.

I Show that X `(u, v) is (typically) larger if u and v are in
same cluster.

I Massoulie: Define a symmetric matrix Au,v = number of
self-avoiding walks from u to v of length ε log n and show
second eigenvector is correlated with partition.

I Massoulie gets symmetric matrix. MNS - almost linear
time.
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Future Research

I Other planted models: more than two clusters, unequal
size etc.

I Typically expect computational threshold to be different
than information threshold.

I For example: hidden clique.
I More challenging: BP and Survey Propagation for

satisfiability problems.
I How to let linear algebra algorithms utilize local

information?
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A New Type of Phase Transition Question

I Thm 1 (M-Neeman-Sly 12): f (a− b)2 ≤ 2(a + b) the
impossible to infer better than random.

I Thm 3 (M-Neeman-Sly, 14): If (a− b)2 > 100(a + b) then
Belief Propagation is optimal for detection.

I Proofs via phase transitions for broadcasting on trees.
Thm 3 requires a new phase transition!



Broadcasting on trees

Take a tree. Fix ε ∈ (0,1).

Color the root randomly.

For each child, copy the color
with probability 1− ε.
Otherwise, flip the color

Question: given the leaves, can we guess the color of the root?
Answer: iff (1− 2ε)2d > 1
(where d is the branching number of the tree)
(... Evans, Kenyon, Peres, Schulman, 2000 ... )
=⇒ Thm 1 with ε = a/(a + b),d = (a + b)/2
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Robust tree reconstruction

To Analyze BP with good initial messages, we need to
understand the following process

Take a tree and color the root randomly.

For each child, copy the color with
probability 1− ε. Otherwise, flip the color

Flip the leaves with probability δ < 1/2

Theorem (MNS-14)

If (1− 2ε)2d ≥ C then as n→∞, the extra noise doesn’t hurt
the reconstruction probability.

Strong property of a non-linear dynamical system (stronger
than non-ergodicity, ”robust reconstruction” etc. (Janson-M-04)

.
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Summary

Takeaways:

I Know how to reconstruct block models

I Theory can learn from practice.
I Nice to work with physicists and/or statisticians.
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Future Research

I Other planted models: more than two clusters, unequal
size etc.

I Typically expect computational threshold to be different
than information threshold.

I For example: hidden clique.
I More challenging: BP and Survey Propagation for

satisfiability problems.
I How to let linear algebra algorithms utilize local

information?
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