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Many propagation methods; Often, a linear system of equations

PRODUCERSCONSUMERS

CTo get recommendations for C, compute 
similarity scores for all consumers, and 
relevance scores for all producers, with 
respect to C


1.  Start with sim(C) = 1


2. Propagate similarity scores along graph 
edges to compute relevance scores, and vice-
versa



Collaborative Filter: Love or Money

How should we do this propagation? Two extremes:


LOVE: All the similarity score of a consumer X gets transferred 
to each producer that X follows, and the same in the reverse 
direction

⇢Analogous to Singular Value Decompositions in the dense graph limit 

(HITS)


MONEY: If X follows d producers, then a fraction 1/d of the 
similarity score of X gets transferred to each producer that X 
follows (SALSA)




Personalized PageRank
Given a consumer C, perform a random walk on the Follow 
graph. If the walk is at node v, then the walk:

⇢Jumps back to node C with probability α

⇢Follows a random edge out of v with probability 1 - α


The Personalized PageRank of node Y is the weight of Y in 
the stationary distribution of this random walk


SALSA/Money is just Personalized PageRank run on the 
undirected consumer-producer graph




A Dark Test
Run various algorithms to predict 
follows, but don’t display the 
results. Instead, just observe how 
many of the top predictions get 
followed organically


[Bahmani, Chowdhury, Goel; 2010]
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Strategic Impact

Creates billions of new follows every year

⇢More than 1/8 of new follows are directly via the Who-to-

Follow module 
⇢More than 15% of active users (> 36 Million users) make at 

least one follow every month via this module



Promoted Tweets and Promoted 
Accounts
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Impact on Revenue 
“The Who-To-Follow system was crucial, in a 
fundamental way, for the Promoted Accounts 
product, and the Promoted Tweets product also 
initially used the Who-To-Follow system’s 
targeting”


- Alex Roetter (VP of Engineering, Revenue)



Scientific Questions

1. Fast Incremental PageRank


2. Fast Personalized PageRank



Incremental PageRank
Updates to social graph are made in real-time

⇢As opposed to a batched crawl process for web search 
⇢Real-time updates to PageRank are important to capture trending 

events 

Goal: Design an algorithm to update PageRank 
incrementally (i.e. upon an edge arrival)

⇢t-th edge arrival: Let (ut, vt) denote the arriving edge, dt(v) denote 

the out-degree of node v, and πt(v) its PageRank



Incremental PageRank via Monte Carlo
Start with R = O(log N) random walks from every node


At time t, for every random walk through node ut,  re-route 
it to use the new edge (ut, vt) with probability 1/dt(ut) 

⇢Time/number of network-calls for each re-routing: O(1/α) 

Claim: This faithfully maintains R random walks after 
arbitrary edge arrivals


Need the graph and the stored random walks  in fast 
distributed memory



Incremental PageRank Time
Assume that the edges of the graph are chosen by 
an adversary, but then presented in random order


Theorem: # of re-routings per arrival goes to 0

⇢t-th arrival: # of reroutes = O(N R/(α t)) 
⇢Total time over M arrivals = O((N R log N)/α2) 
⇢Comparable to doing power iteration/Monte Carlo just once! 

[Bahmani, Goel, Chowdhury, VLDB 2010]
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N log N/α vs

M
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time M R/α



Personalized PageRank

Network-based Personalized Search is not yet 
mature


Missing technical piece: Efficient algorithms for 
Personalized PageRank Queries

⇢Given source s and target t, estimate the Personalized PageRank of t 

for s with high accuracy, if it is greater than δ



Personalized PageRank
Given a consumer C, perform a random walk on the Follow 
graph. If the walk is at node v, then the walk:

⇢Jumps back to node C with probability α

⇢Follows a random edge out of v with probability 1 - α


The Personalized PageRank of node Y is the weight of Y in 
the stationary distribution of this random walk




Monte Carlo uses time > 1/δ 
“Local Update” uses time d/δ 
!

[d = M/N is the average degree]

Existing Methods for PPR Queries



FAST PPR

We can answer PPR queries in either

⇢Average time Õ(√(d/δ))                 
⇢Worst case time Õ(√(d/δ)) with Õ(√(d/δ)) storage and pre-

processing time per node 
⇢Typical values: δ ~ 10-8, d ~ 100; results in a > 100-fold decrease



Basic Idea

Intuition: The Birthday Paradox

⇢Do small number of “forward” random 

walks from s 
⇢Do “reverse” PageRank computation from 

t using Local Update with low accuracy 
⇢Use number of collisions as an estimator 
⇢Need to “catch” a collision just before it 

happens

	
  

	
  	
   	
   	
   	
  	
   	
  	
  	
   	
  	
   	
  
	
  	
   	
   	
  	
   	
   	
  	
   	
  	
  	
   	
  	
  



Simple Version of FAST PPR

	
  

	
  	
   	
   	
   	
  	
   	
  	
  	
   	
  	
   	
  
	
  	
   	
   	
  	
   	
   	
  	
   	
  	
  	
   	
  	
  



Running Time for Simple Version



Running Time for Simple Version

Reverse work	


(Local Update)



Running Time for Simple Version

Reverse work	


(Local Update)

Forward work	


(Monte Carlo)



Running Time for Simple Version

We get final running time of Õ(√(d/δ)) by using different accuracies in 
forward and reverse computation


We use Õ(√(d/δ)) pre-processing/space to go from average to worst 
case running time

Reverse work	


(Local Update)

Forward work	


(Monte Carlo)



(Targets sampled by PageRank)

Experiments

⇢Admits Distributed Implementation 
⇢Works when source is a set of nodes 
⇢Lower bound of 1/√δ 
⇢Open problem: do we need the √d ? 

[Lofgren, Banerjee, Goel, Seshadhri, KDD, 2014]



BACKUP SLIDES



Ongoing evaluation
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Collaborative Filter: Illustration

Use a simple 
propagation 
method: divide 
score by 2 and 
propagate (ignore 
the client after step 
1)
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