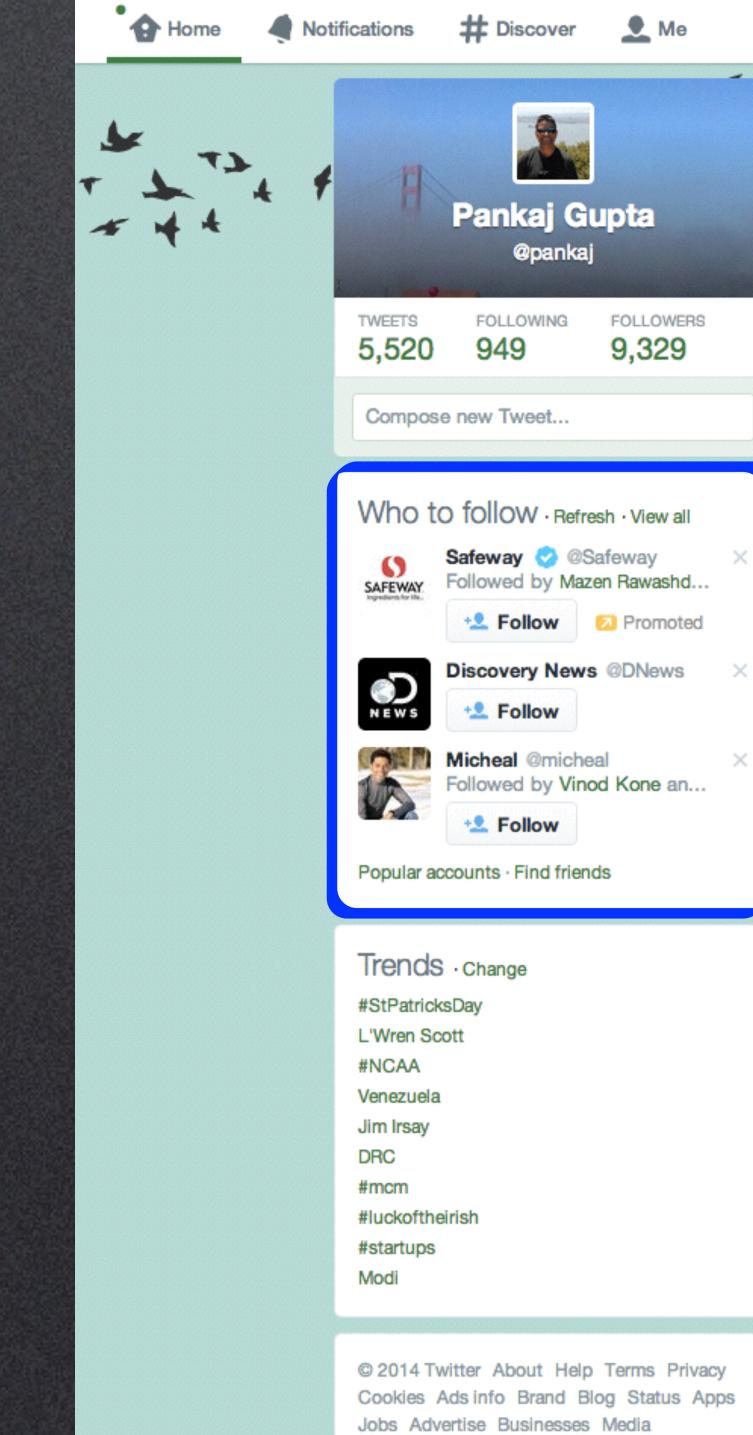
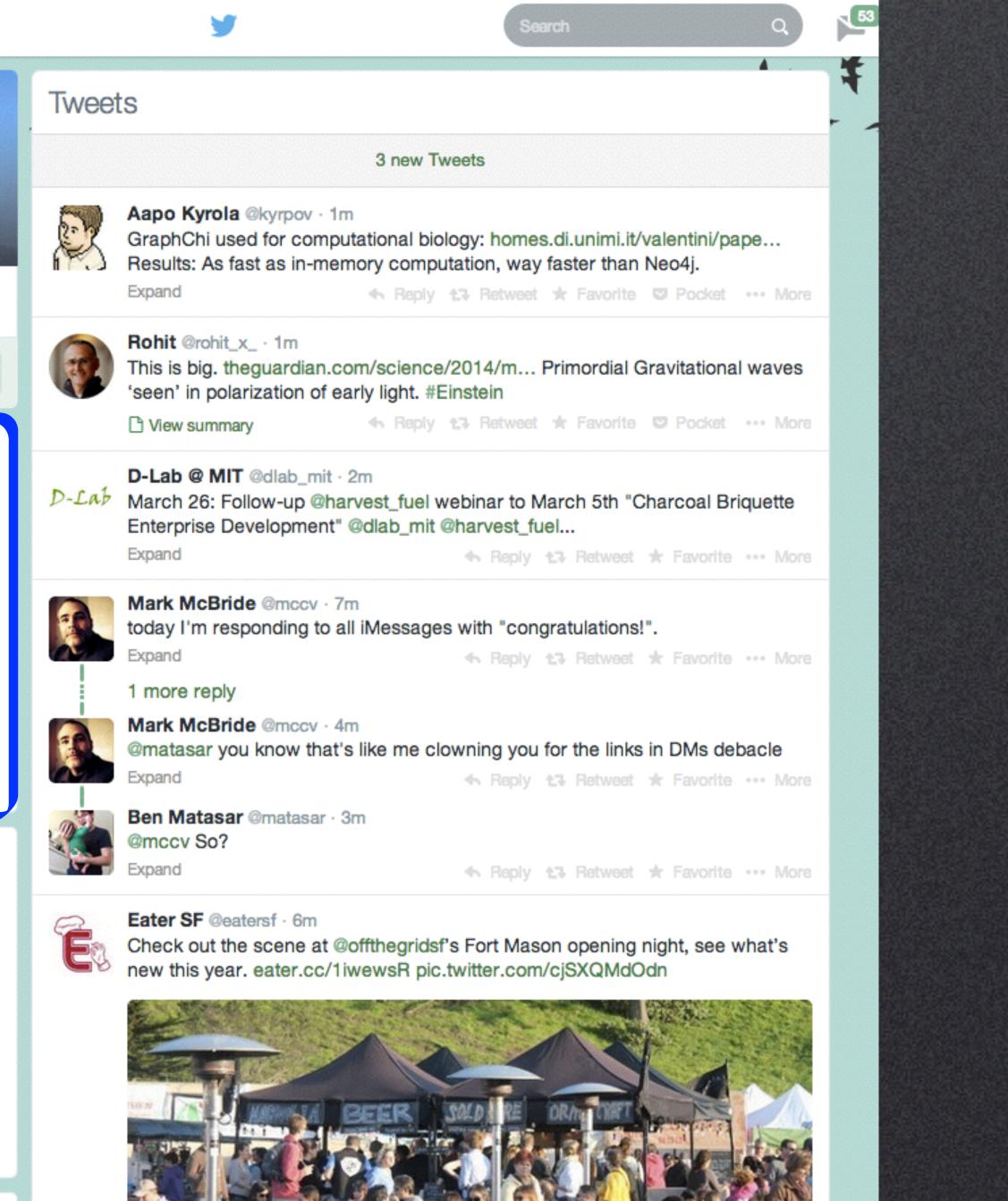
Two Random Walks that Surprise

Ashish Goel Stanford University

PageRank





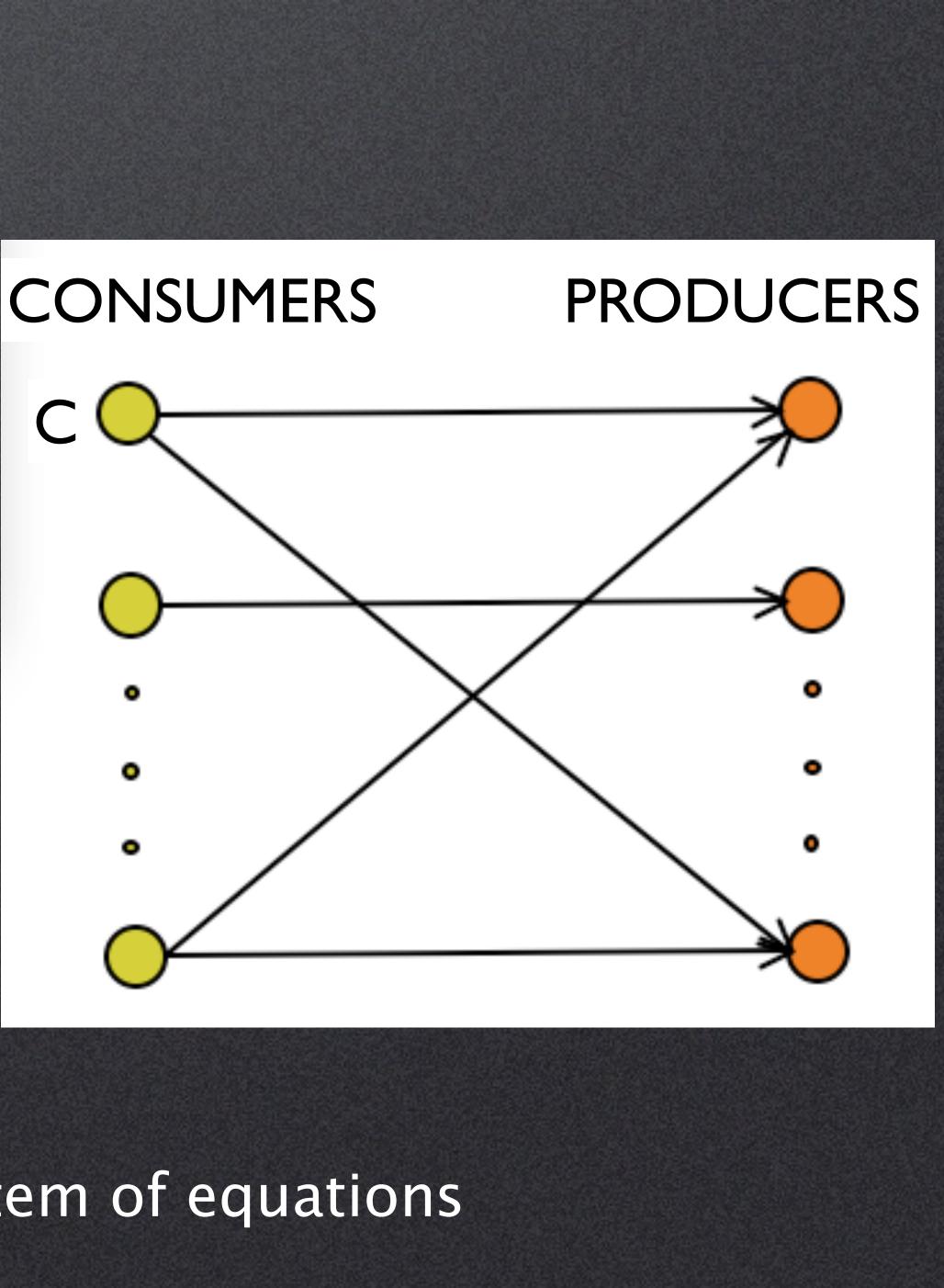
Collaborative Filtering

To get recommendations for C, compute similarity scores for all consumers, and relevance scores for all producers, with respect to C

1. Start with sim(C) = 1

2. Propagate similarity scores along graph edges to compute relevance scores, and vice-versa

Many propagation methods; Often, a linear system of equations



Collaborative Filter: Love or Money

How should we do this propagation? Two extremes:

LOVE: All the similarity score of a consumer X gets transferred to each producer that X follows, and the same in the reverse direction

 Analogous to Singular Value Decompositions in the dense graph limit (HITS)

MONEY: If X follows d producers, then a fraction 1/d of the similarity score of X gets transferred to each producer that X follows (SALSA)

Personalized PageRank graph. If the walk is at node \vee , then the walk:

the stationary distribution of this random walk

SALSA/Money is just Personalized PageRank run on the undirected consumer-producer graph

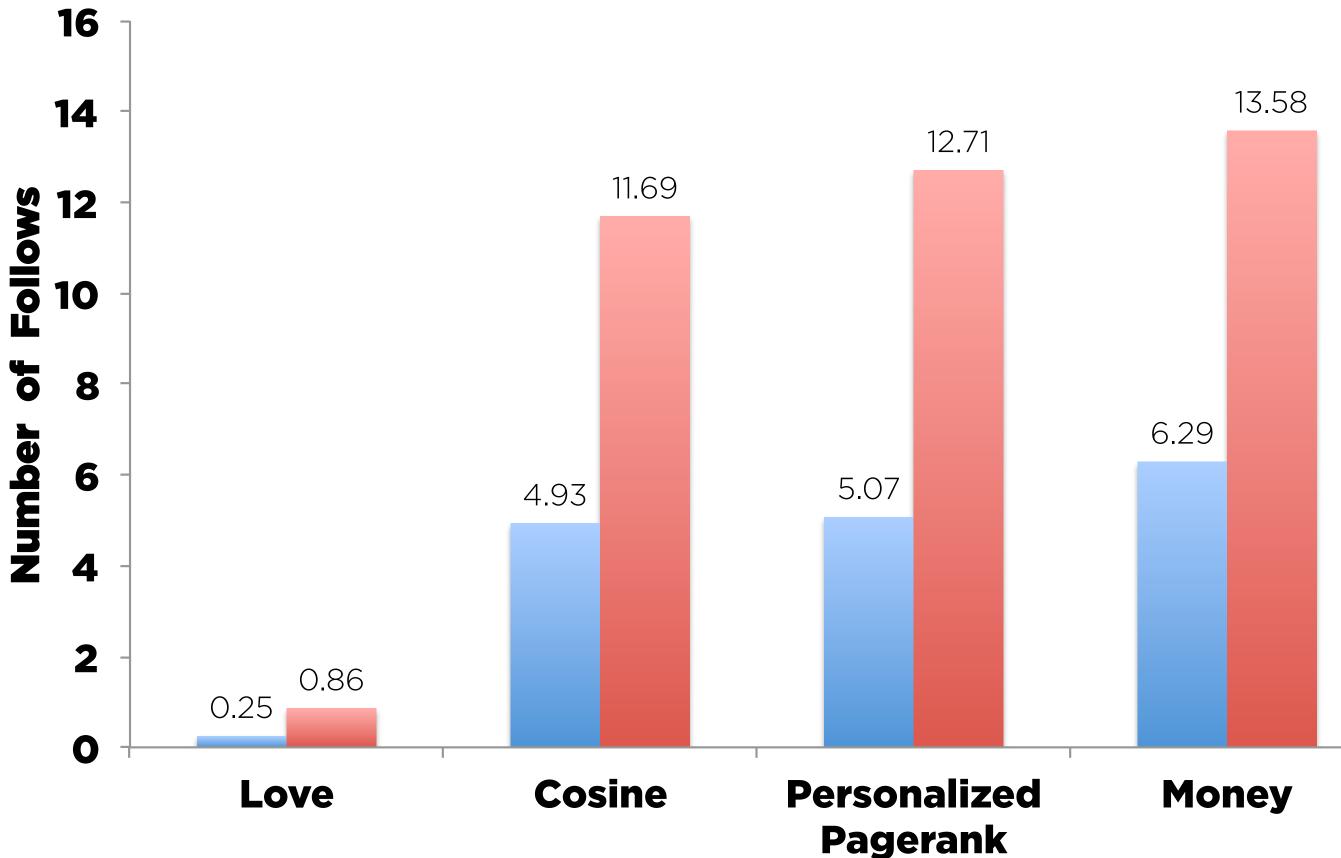
- Given a consumer C, perform a random walk on the Follow
- \rightarrow Follows a random edge out of v with probability 1 α
- The Personalized PageRank of node Y is the weight of Y in

A Dark Test

Run various algorithms to predict follows, but don't display the results. Instead, just observe how many of the top predictions get followed organically

[Bahmani, Chowdhury, Goel; 2010]

Top 100 Top 1000



Strategic Impact

Creates billions of new follows every year Follow module ---- More than 15% of active users (> 36 Million users) make at least one follow every month via this module

Promoted Tweets and Promoted Accounts

1 new Tweet

Aneesh Sharma @aneeshs · 4m Feeling lucky to be at #analytics2014 with @ashishgoel @johnsirois @pankaj @sgurumur for our #edelmanaward presentation. Go #teamtwitter!

Expand

Reply 13 Retweet * Favorite ··· More

John Sirois @johnsirois · 5m Hanging out with @ashishgoel @sgurumur @pankaj @aneeshs #analytics2014. Special thanks to our #edelmanaward coaches John Birge & Carrie Beam

Expand

◆ Reply ★3 Retweet ★ Favorite ··· More

Followed by Peter Fenton.

NewRelic @newrelic · Mar 11

4 Essential Tips from the Coding CEO. How New Relic CEO Lew Cirne still builds product: blog.newrelic.com/2014/03/11/sxs...

Promoted by NewRelic Expand

A Reply 13 Retweet * Favorite ··· More

Promoted Tweets and Promoted Accounts

Promoted Tweets and Promoted Accounts

Impact on Revenue

initially used the Who-To-Follow system's targeting"

- Alex Roetter (VP of Engineering, Revenue)

"The Who-To-Follow system was crucial, in a fundamental way, for the Promoted Accounts product, and the Promoted Tweets product also

Scientific Questions

1. Fast Incremental PageRank 2. Fast Personalized PageRank

Incremental PageRank
Updates to social graph are made in real-time
As opposed to a batched crawl process for web search
Real-time updates to PageRank are important to capture trending events

Goal: Design an algorithm to update PageRank incrementally (i.e. upon an edge arrival)
t-th edge arrival: Let (ut, vt) denote the arriving edge, dt(v) denote the out-degree of node v, and πt(v) its PageRank

Start with $R = O(\log N)$ random walks from every node it to use the new edge (u_t, v_t) with probability $1/d_t(u_t)$ \rightarrow Time/number of network-calls for each re-routing: $O(1/\alpha)$ Claim: This faithfully maintains R random walks after arbitrary edge arrivals Need the graph and the stored random walks in fast distributed memory

Incremental PageRank via Monte Carlo

- At time t, for every random walk through node ut, re-route

Theorem: # of re-routings per arrival goes to 0 \rightarrow t-th arrival: # of reroutes = O(N R/(α t)) \rightarrow Total time over M arrivals = $O((N R \log N)/\alpha^2)$ [Bahmani, Goel, Chowdhury, VLDB 2010]

Incremental PageRank Time Assume that the edges of the graph are chosen by an adversary, but then presented in random order ---- Comparable to doing power iteration/Monte Carlo just once!

Theorem: # of r \rightarrow t-th arrival: # of NR/ α Monte Carlo takes time NR/ α per arrival goes to 0 Total time over M arrivals = $O((N R \log N)/\alpha^2)$ [Bahmani, Goel, Chowdhury, VLDB 2010]

Incremental PageRank Time Assume that the edges of the graph are chosen by an adversary, but then presented in random order ----> Comparable to doing power iteration/Monte Carlo just once!

Incremental PageRank Time Assume that the edges of the graph are chosen by an adversary, but then presented in random order Theorem: # of r + t-th arrival: # of Only an extra log N/α Total time over M arrivals = $O((N R \log N)/\alpha^2)$ ---- Comparable to doing power iteration/Monte Carlo just once! [Bahmani, Goel, Chowdhury, VLDB 2010]

Theorem: # of r Power \rightarrow t-th arrival: # of time M R/ α per arrival goes to 0 N R/(α t)) Total time over M arrivals = O((N R log N)/ α^2) [Bahmani, Goel, Chowdhury, VLDB 2010]

Incremental PageRank Time Assume that the edges of the graph are chosen by an adversary, but then presented in random order ----> Comparable to doing power iteration/Monte Carlo just once!

Theorem: # of r + t-th arrival: # of $\frac{Power}{time M R/\alpha}$ per arrival goes to 0 N R/(α t)) Total time over M arrivals = $O((N R \log N)/\alpha^2)$ [Bahmani, Goel, Chowdhury, VLDB 2010]

Incremental PageRank Time Assume that the edges of the graph are chosen by an adversary, but then presented in random order N log N/X VS M ---- Comparable to doing power iteration/Monte Carlo just once!

Personalized PageRank

mature

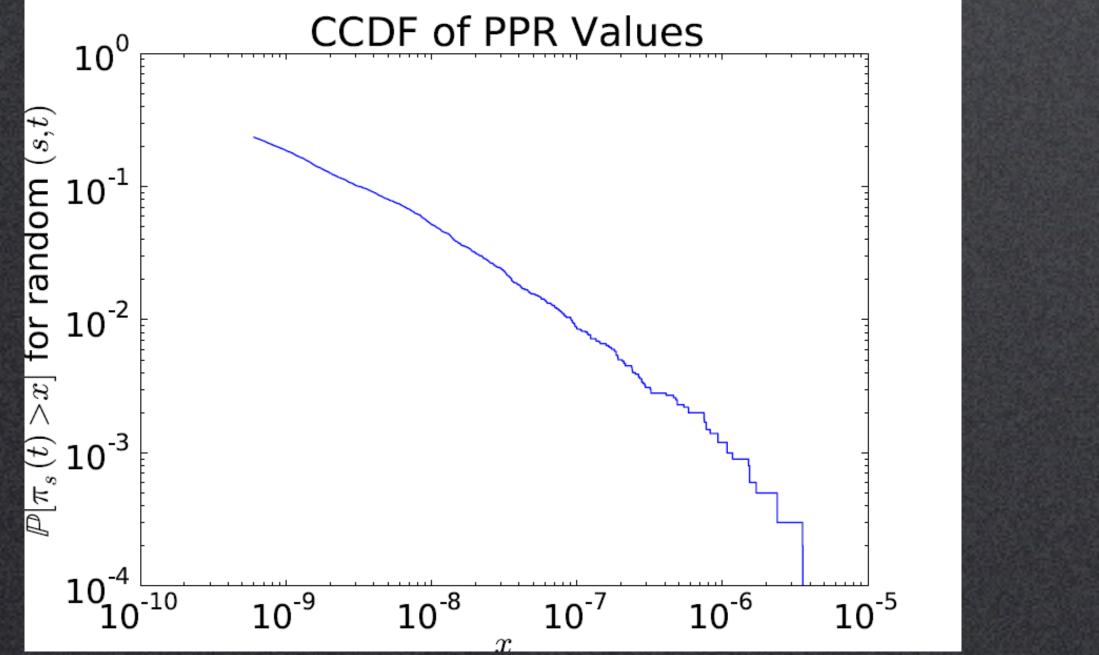
Missing technical piece: Efficient algorithms for Personalized PageRank Queries Given source s and target t, estimate the Personalized PageRank of t for s with high accuracy, if it is greater than δ

Network-based Personalized Search is not yet

Personalized PageRank

Given a consumer C, perform a random walk on the Follow graph. If the walk is at node v, then the walk:
Jumps back to node C with probability α
Follows a random edge out of v with probability 1 – α
The Personalized PageRank of node Y is the weight of Y in the stationary distribution of this random walk

Existing Methods for PPR Queries



Monte Carlo uses time > $1/\delta$ "Local Update" uses time d/δ

[d = M/N is the average degree]

On Twitter-2010, if $\delta = \frac{4}{n} \approx 10^{-7}$, then $\Pr\left[\pi(s,t) > \delta\right] = 1\%$



FAST PPR

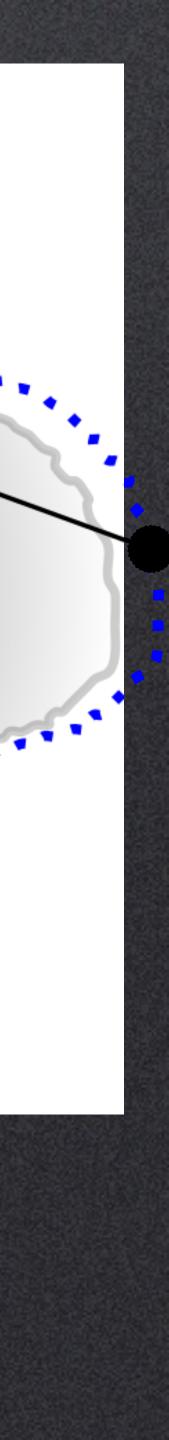
We can answer PPR queries in either Average time $\tilde{O}(\sqrt{d/\delta})$ Worst case time $\tilde{O}(\sqrt{(d/\delta)})$ with $\tilde{O}(\sqrt{(d/\delta)})$ storage and preprocessing time per node Typical values: $\delta \sim 10^{-8}$, $d \sim 100$; results in a > 100-fold decrease

Basic Idea

Intuition: The Birthday Paradox walks from s

---- Do small number of "forward" random ---> Do "reverse" PageRank computation from t using Local Update with low accuracy Use number of collisions as an estimator ---- Need to "catch" a collision just before it happens

Backward Work Frontier discovery)



Simple Version of FAST PPR

- 1. Use Local Update to compute estimates $\hat{\pi}(v,t)$ to accuracy $O(\sqrt{\delta})$.
- 2. Define

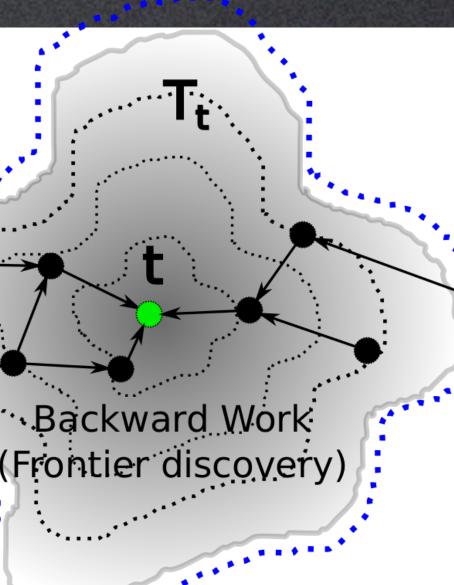
For arget Set
$$\widehat{T}_t = \{v \in V : \widehat{\pi}(v, t) >$$

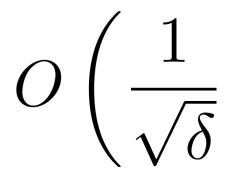
Frontier $\widehat{F}_t = \{u \in V \setminus \widehat{T}_t : (u, v)\}$

- 3. Take $O\left(\frac{\log(n)}{\sqrt{\delta}}\right)$ Random Walks $\{W_i\}$, terminating each early if it hits \widehat{F}_t . Define $X_i = \begin{cases} \hat{\pi}(u,t), & W_i \text{ hits } u \in \widehat{F}_t \\ 0, & W_i \text{ does not hit} \end{cases}$
- 4. Return empirical mean $\{X_i\}$.

 $\sqrt{\delta}$ $\in E \text{ for some } v \in \widetilde{T_t} \}$

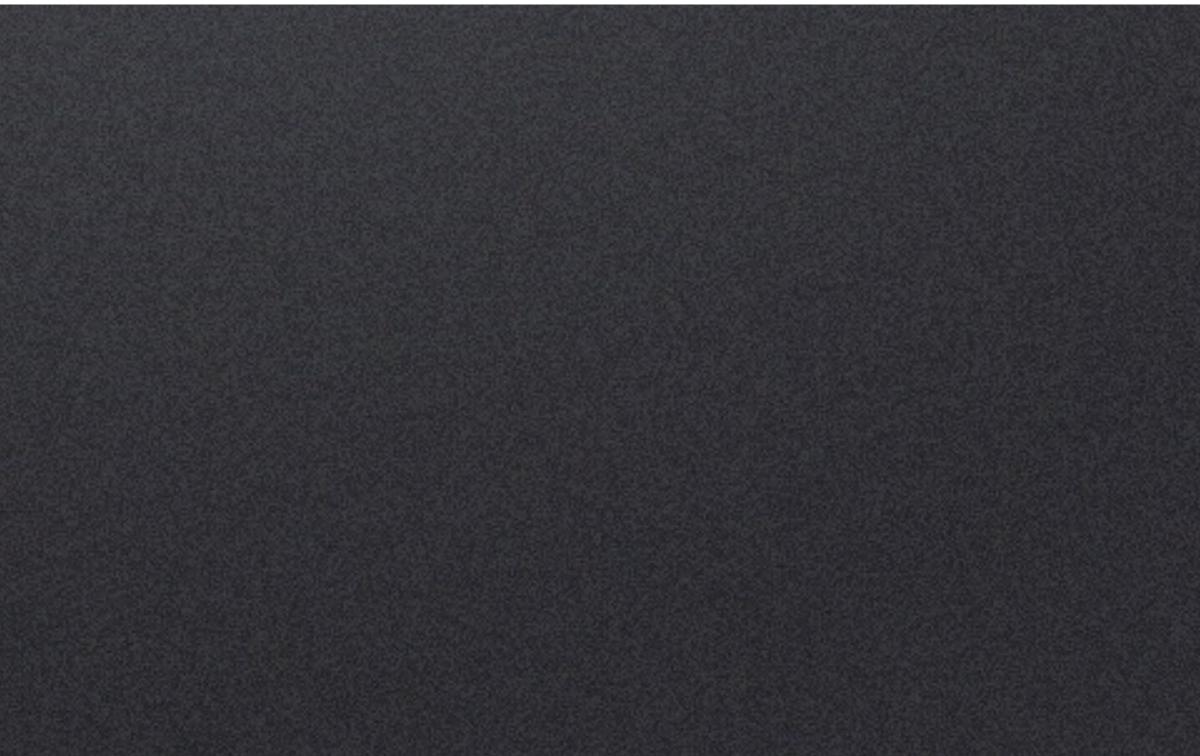
 W_i does not hit F_t



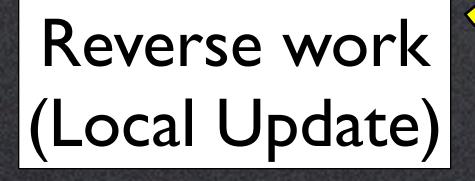


For a uniformly random target node t, the average per-query running time is

 $O\left(\frac{1}{\sqrt{\delta}}\left(\bar{d} + \log(n)\right)\right).$



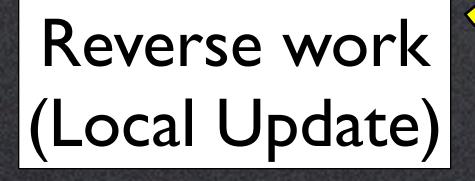




For a uniformly random target node t, the average per-query running time is

 $O\left(\frac{1}{\sqrt{\delta}}\left(\bar{d} + \log(n)\right)\right).$





For a uniformly random target node t, the average per-query running time is

 $O\left(\frac{1}{\sqrt{\delta}}\left(\bar{d} + \log(n)\right)\right).$

Forward work (Monte Carlo)



Reverse work (Local Update)

We get final running time of $\tilde{O}(\sqrt{d/\delta})$ by using different accuracies in forward and reverse computation

We use $\tilde{O}(\sqrt{d/\delta})$ pre-processing/space to go from average to worst case running time

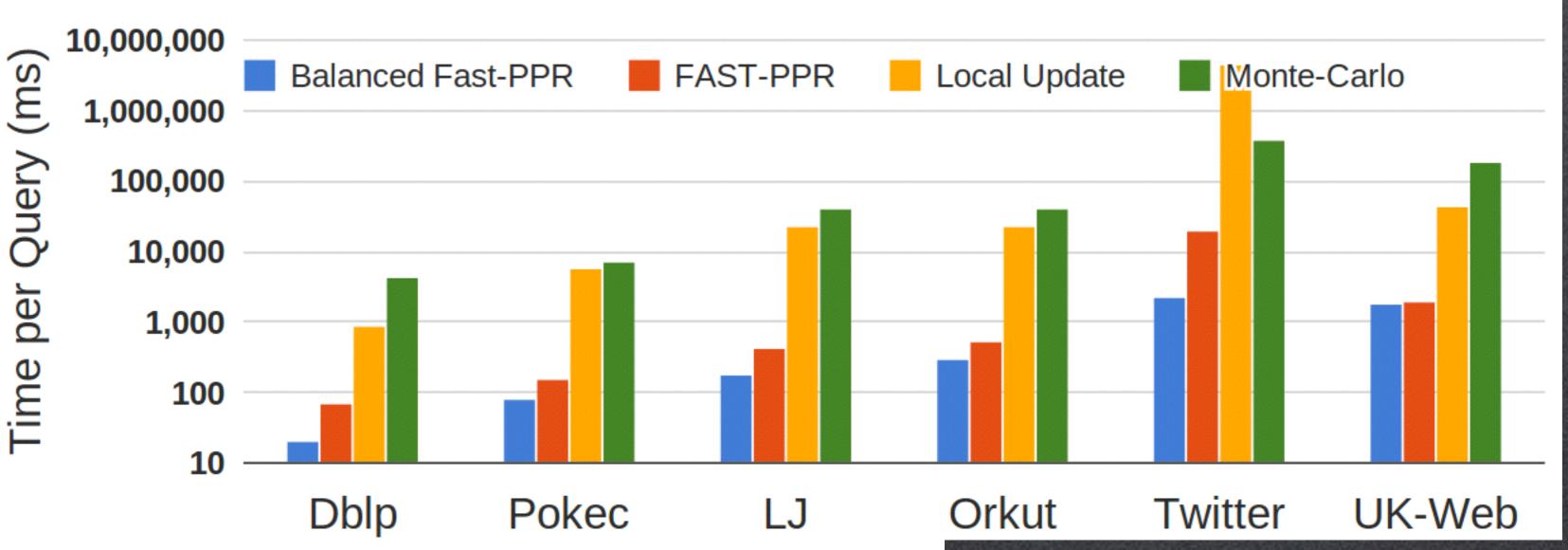
For a uniformly random target node t, the average per-query running time is

$$\left(\bar{d} + \log(n)\right)$$

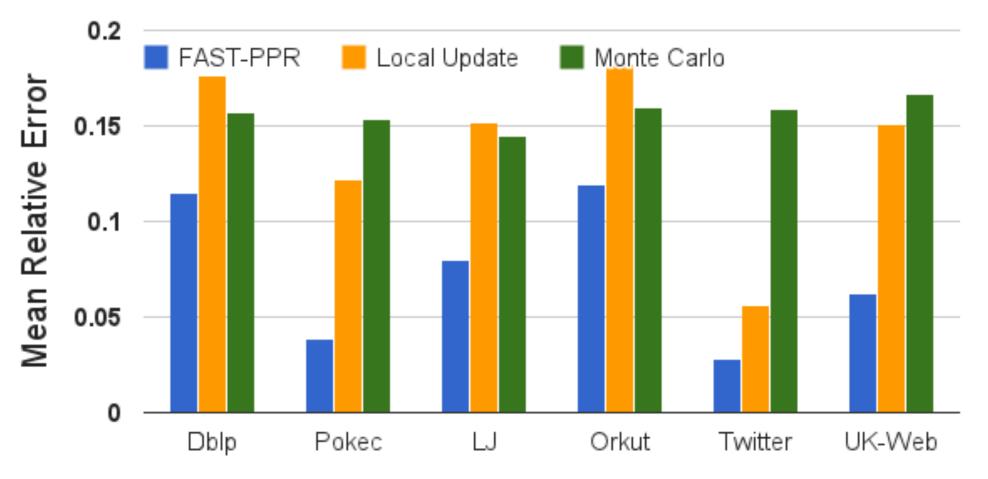
Forward work (Monte Carlo)



Running Time (Targets sampled by PageRank)



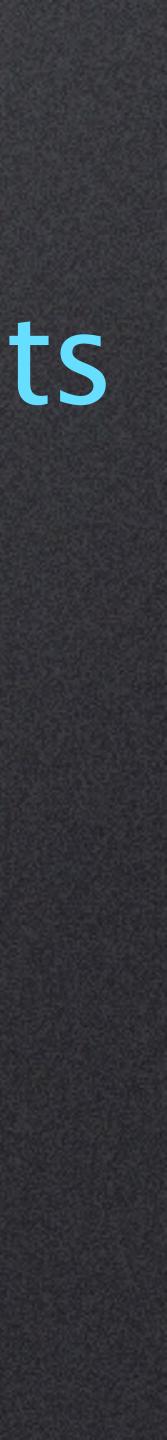
Relative Error of Personalized PageRank Estimates



Experiments

Admits Distributed Implementation Works when source is a set of nodes Lower bound of $1/\sqrt{\delta}$ Open problem: do we need the \sqrt{d} ?

[Lofgren, Banerjee, Goel, Seshadhri, KDD, 2014]



BACKUP SLIDES

Ongoing evaluation

