
Two Random Walks that
Surprise

!

Ashish Goel

Stanford University

PageRank

Collaborative
Filtering

!

Many propagation methods; Often, a linear system of equations

PRODUCERSCONSUMERS

CTo get recommendations for C, compute
similarity scores for all consumers, and
relevance scores for all producers, with
respect to C

1. Start with sim(C) = 1

2. Propagate similarity scores along graph
edges to compute relevance scores, and vice-
versa

Collaborative Filter: Love or Money

How should we do this propagation? Two extremes:

LOVE: All the similarity score of a consumer X gets transferred
to each producer that X follows, and the same in the reverse
direction

⇢Analogous to Singular Value Decompositions in the dense graph limit

(HITS)

MONEY: If X follows d producers, then a fraction 1/d of the
similarity score of X gets transferred to each producer that X
follows (SALSA)

Personalized PageRank
Given a consumer C, perform a random walk on the Follow
graph. If the walk is at node v, then the walk:

⇢Jumps back to node C with probability α

⇢Follows a random edge out of v with probability 1 - α

The Personalized PageRank of node Y is the weight of Y in
the stationary distribution of this random walk

SALSA/Money is just Personalized PageRank run on the
undirected consumer-producer graph

A Dark Test
Run various algorithms to predict
follows, but don’t display the
results. Instead, just observe how
many of the top predictions get
followed organically

[Bahmani, Chowdhury, Goel; 2010]

0.25

4.93 5.07

6.29

0.86

11.69
12.71

13.58

0

2

4

6

8

10

12

14

16

Love Cosine Personalized
Pagerank

Money

N
um

be
r

of
 F

ol
lo

w
s

Top 100 Top 1000

Strategic Impact

Creates billions of new follows every year

⇢More than 1/8 of new follows are directly via the Who-to-

Follow module
⇢More than 15% of active users (> 36 Million users) make at

least one follow every month via this module

Promoted Tweets and Promoted
Accounts

Promoted Tweets and Promoted
Accounts

Promoted Tweets and Promoted
Accounts

Impact on Revenue
“The Who-To-Follow system was crucial, in a
fundamental way, for the Promoted Accounts
product, and the Promoted Tweets product also
initially used the Who-To-Follow system’s
targeting”

- Alex Roetter (VP of Engineering, Revenue)

Scientific Questions

1. Fast Incremental PageRank

2. Fast Personalized PageRank

Incremental PageRank
Updates to social graph are made in real-time

⇢As opposed to a batched crawl process for web search
⇢Real-time updates to PageRank are important to capture trending

events

Goal: Design an algorithm to update PageRank
incrementally (i.e. upon an edge arrival)

⇢t-th edge arrival: Let (ut, vt) denote the arriving edge, dt(v) denote

the out-degree of node v, and πt(v) its PageRank

Incremental PageRank via Monte Carlo
Start with R = O(log N) random walks from every node

At time t, for every random walk through node ut, re-route
it to use the new edge (ut, vt) with probability 1/dt(ut)

⇢Time/number of network-calls for each re-routing: O(1/α)

Claim: This faithfully maintains R random walks after
arbitrary edge arrivals

Need the graph and the stored random walks in fast
distributed memory

Incremental PageRank Time
Assume that the edges of the graph are chosen by
an adversary, but then presented in random order

Theorem: # of re-routings per arrival goes to 0

⇢t-th arrival: # of reroutes = O(N R/(α t))
⇢Total time over M arrivals = O((N R log N)/α2)
⇢Comparable to doing power iteration/Monte Carlo just once!

[Bahmani, Goel, Chowdhury, VLDB 2010]

Incremental PageRank Time
Assume that the edges of the graph are chosen by
an adversary, but then presented in random order

Theorem: # of re-routings per arrival goes to 0

⇢t-th arrival: # of reroutes = O(N R/(α t))
⇢Total time over M arrivals = O((N R log N)/α2)
⇢Comparable to doing power iteration/Monte Carlo just once!

[Bahmani, Goel, Chowdhury, VLDB 2010]

Monte Carlo
takes time

NR/α

Incremental PageRank Time
Assume that the edges of the graph are chosen by
an adversary, but then presented in random order

Theorem: # of re-routings per arrival goes to 0

⇢t-th arrival: # of reroutes = O(N R/(α t))
⇢Total time over M arrivals = O((N R log N)/α2)
⇢Comparable to doing power iteration/Monte Carlo just once!

[Bahmani, Goel, Chowdhury, VLDB 2010]

Monte Carlo
takes time

NR/α Only an extra
log N/α

Incremental PageRank Time
Assume that the edges of the graph are chosen by
an adversary, but then presented in random order

Theorem: # of re-routings per arrival goes to 0

⇢t-th arrival: # of reroutes = O(N R/(α t))
⇢Total time over M arrivals = O((N R log N)/α2)
⇢Comparable to doing power iteration/Monte Carlo just once!

[Bahmani, Goel, Chowdhury, VLDB 2010]

Power
iteration takes
time M R/α

Incremental PageRank Time
Assume that the edges of the graph are chosen by
an adversary, but then presented in random order

Theorem: # of re-routings per arrival goes to 0

⇢t-th arrival: # of reroutes = O(N R/(α t))
⇢Total time over M arrivals = O((N R log N)/α2)
⇢Comparable to doing power iteration/Monte Carlo just once!

[Bahmani, Goel, Chowdhury, VLDB 2010]

N log N/α vs

M

Power
iteration takes
time M R/α

Personalized PageRank

Network-based Personalized Search is not yet
mature

Missing technical piece: Efficient algorithms for
Personalized PageRank Queries

⇢Given source s and target t, estimate the Personalized PageRank of t

for s with high accuracy, if it is greater than δ

Personalized PageRank
Given a consumer C, perform a random walk on the Follow
graph. If the walk is at node v, then the walk:

⇢Jumps back to node C with probability α

⇢Follows a random edge out of v with probability 1 - α

The Personalized PageRank of node Y is the weight of Y in
the stationary distribution of this random walk

Monte Carlo uses time > 1/δ
“Local Update” uses time d/δ
!

[d = M/N is the average degree]

Existing Methods for PPR Queries

FAST PPR

We can answer PPR queries in either

⇢Average time Õ(√(d/δ))
⇢Worst case time Õ(√(d/δ)) with Õ(√(d/δ)) storage and pre-

processing time per node
⇢Typical values: δ ~ 10-8, d ~ 100; results in a > 100-fold decrease

Basic Idea

Intuition: The Birthday Paradox

⇢Do small number of “forward” random

walks from s
⇢Do “reverse” PageRank computation from

t using Local Update with low accuracy
⇢Use number of collisions as an estimator
⇢Need to “catch” a collision just before it

happens

	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

Simple Version of FAST PPR

	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

Running Time for Simple Version

Running Time for Simple Version

Reverse work	

(Local Update)

Running Time for Simple Version

Reverse work	

(Local Update)

Forward work	

(Monte Carlo)

Running Time for Simple Version

We get final running time of Õ(√(d/δ)) by using different accuracies in
forward and reverse computation

We use Õ(√(d/δ)) pre-processing/space to go from average to worst
case running time

Reverse work	

(Local Update)

Forward work	

(Monte Carlo)

(Targets sampled by PageRank)

Experiments

⇢Admits Distributed Implementation
⇢Works when source is a set of nodes
⇢Lower bound of 1/√δ
⇢Open problem: do we need the √d ?

[Lofgren, Banerjee, Goel, Seshadhri, KDD, 2014]

BACKUP SLIDES

Ongoing evaluation

 0

 0.5

 1

 1.5

 2

 2.5

SALSA Pers. PR Sim(followings) MCM Closure

F
T

R

SALLY% BOB%

KUMAR%JIN%

KUMAR% ALEX%

Collaborative Filter: Illustration

Use a simple
propagation
method: divide
score by 2 and
propagate (ignore
the client after step
1)

SALLY% BOB%

KUMAR%JIN%

KUMAR% ALEX%

sim%=%1%

Collaborative Filter: Illustration

Use a simple
propagation
method: divide
score by 2 and
propagate (ignore
the client after step
1)

SALLY% BOB%

KUMAR%JIN%

KUMAR% ALEX%

sim%=%1%
relevance%=%0.5%

Collaborative Filter: Illustration

Use a simple
propagation
method: divide
score by 2 and
propagate (ignore
the client after step
1)

SALLY% BOB%

KUMAR%JIN%

KUMAR% ALEX%

sim%=%1%
relevance%=%0.5%

sim%=%0.25%

Collaborative Filter: Illustration

Use a simple
propagation
method: divide
score by 2 and
propagate (ignore
the client after step
1)

SALLY% BOB%

KUMAR%JIN%

KUMAR% ALEX%

sim%=%1%
relevance%=%0.625%

sim%=%0.25%

relevance%=%0.125%

relevance%=%0.125%

Collaborative Filter: Illustration

Use a simple
propagation
method: divide
score by 2 and
propagate (ignore
the client after step
1)

SALLY% BOB%

KUMAR%JIN%

KUMAR% ALEX%

sim%=%1%
relevance%=%0.625%

sim%=%0.25%

relevance%=%0.125%

relevance%=%0.125%

Collaborative Filter: Illustration

Use a simple
propagation
method: divide
score by 2 and
propagate (ignore
the client after step
1)

